
Journal of American Science 2010; 6(3)

http://www.americanscience.org editor@americanscience.org 166

Quality Models in Software Engineering Literature:
An Analytical and Comparative Study

Rafa E. Al-Qutaish, PhD

Al Ain University of Science and Technology – Abu Dhabi Campus, PO Box: 112612, Abu Dhabi, UAE.

rafa@ieee.org

Abstract: The quality of the software is critical and essential in different types of organizations. In some types of
software, poor quality of the software product in sensitive systems (such as: real-time systems, control systems, etc.)
may lead to loss of human life, permanent injury, mission failure, or financial loss. In software engineering
literature, there are a number of quality models in which they contain a number of quality characteristics (or factors,
as called in some models). These quality characteristics could be used to reflect the quality of the software product
from the view of that characteristic. Selecting which one of the quality models to use is a real challenge. In this
paper, we will discuss the contents of the following quality models: McCall’s quality model, Boehm’s quality
model, Dromey's quality model, FURPS quality model and ISO 9126 quality model. In addition, we will focus on a
comparison between these quality models, and find the key differences between them. [Journal of American Science
2010; 6(3):166-175]. (ISSN: 1545-1003).

Keywords: Software Quality; Quality Models; Quality Engineering; ISO 9126; McCall’s Quality Model; Boehm’s
Quality Model; Dromey's Quality Model; FURPS Quality Model

1. Introduction

Software is critical in providing a
competitive edge to many organizations, and is
progressively becoming a key component of business
systems, products and services. The quality of
software products is now considered to be an
essential element in business success [Veenendaal
and McMullan, 1997]. Furthermore, the quality of
software product is very important and essential since
for example in some sensitive systems – such as,
real-time systems, control systems, etc. – the poor
quality may lead to financial loss, mission failure,
permanent injury or even loss of human life.

There are several definitions for “software
Quality” term, for examples, it is defined by the IEEE
[1990] as the degree to which a system, component
or process meets specified requirements and
customer (user) needs (expectations). Pressman
[2004] defines it as “conformance to explicitly stated
functional and performance requirements, explicitly
documented development standards, and implicit
characteristics that are expected of all professionally
developed software.” The ISO, by contrast, defines
“quality” in ISO 14598-1 [ISO, 1999] as “the totality
of characteristics of an entity that bear on its ability
to satisfy stated and implied needs,” and Petrasch
[1999] defines it as “the existence of characteristics
of a product which can be assigned to requirements.”

There are a number of quality models in
software engineering literature, each one of these
quality models consists of a number of quality
characteristics (or factors, as called in some models).
These quality characteristics could be used to reflect

the quality of the software product from the view of
that characteristic. Selecting which one of the quality
models to use is a real challenge. In this paper, we
will discuss the contents of the following quality
models:
1. McCall’s Quality Model.
2. Boehm’s Quality Model.
3. Dromey's Quality Model.
4. FURPS Quality Model.
5. ISO 9126 Quality Model.

In addition, we will focus on a comparison
between these quality models, and find the key
differences between them.

The rest of this paper is structured as
follows: Section 2 presents an overview of the five
common quality models used in software
engineering. Section 3 contains a detailed analysis
and comparison between the five quality models.
Finally, Section 4 concludes the paper with some
comments.

2. An Overview of the Software Quality Models

2.1 McCall’s Quality Model

McCall’s Quality Model (also
known as the General Electrics Model of
1977) is one of the most known quality
models in the software engineering
literature. It has been presented by Jim
McCall et al. [1977]. This model
originates from the US military and is
primarily aimed towards the system
developers and the system development

Journal of American Science 2010; 6(3)

http://www.americanscience.org editor@americanscience.org 167

process [McCall et al, 1977]. Using this
model, McCall attempts to bridge the gap
between users and developers by focusing
on a number of software quality factors
that reflect both the users’ views and the
developers’ priorities [McCall et al, 1977].

The structure of the McCall’s quality model
consists of three major perspectives (types of quality

characteristics) for defining and identifying the
quality of a software product, and each of these major
perspectives consists of a number of quality factors.
Each of these quality factors has a set of quality
criteria, and each quality criteria could be reflected
by one or more metrics, see Figure 1 for the details of
the McCall’s quality model structure. The contents of
the three major perspectives are the following:

Figure 1. The structure of McCall’s quality model

1. Product Revision: it is about the ability of the

product to undergo changes, and it includes:
a. Maintainability: the effort required to locate

and fix a fault in the program within its
operating environment.

b. Flexibility: the ease of making changes
required by changes in the operating
environment.

c. Testability: the ease of testing the program, to
ensure that it is error-free and meets its
specification.

2. Product Operations: it is about the characteristics
of the product operation. The quality of the
product operations depends on:
a. Correctness: the extent to which a program

fulfils its specification.
b. Reliability: the system ability not to fail.
c. Efficiency: it further categorized into

execution efficiency and storage efficiency
and generally meaning the use of resources,
e.g. processor time, storage.

d. Integrity: the protection of the program from
unauthorized access.

e. Usability: the ease of the use of the software.

3. Product Transition: it is about the adaptability of
the product to new environments. It is all about:
a. Portability: the effort required to transfer a

program from one environment to another.
b. Reusability: the ease of reusing software in a

different context.
c. Interoperability: the effort required to couple

the system to another system.
In more details, McCall’s Quality Model

consists of 11 quality factors to describe the external
view of the software (from the users’ view), 23
quality criteria to describe the internal view of the
software (from the developer’s view) and a set of
Metrics which are defined and used to provide a scale
and method for measurement. Table 1 presents two of
the three major perspectives and their corresponding
quality factors and quality criteria.

The main objective of the McCall’s Quality
Model is that the quality factors structure should
provide a complete software quality picture
[Kitchenham, 1996]. The actual quality metric is
computed by answering “yes” and “no” questions.
However, if answering equally amount of “yes” and

. . .

. . .

Major Perspective 1 Major Perspective 2 Major Perspective 3

Quality Factor 2 Quality Factor 1 Quality Factor N

. . . Quality Criteria 2 Quality Criteria 1 Quality Criteria M

Metric 2 Metric 1 Metric L

McCall’s Quality Model

Journal of American Science 2010; 6(3)

http://www.americanscience.org editor@americanscience.org 168

“no” on the questions measuring a quality criteria,
then you will achieve 50% on that quality criteria.

Table 1. The contents of McCall’s quality model -
product revision and product operations

Major

Perspectives
Quality
Factors

Quality
Criteria

Product
revision

Maintainability Simplicity

Conciseness

Self-descriptiveness

Modularity

 Flexibility Self-descriptiveness

Expandability

Generality

 Testability Simplicity

Instrumentation

Self-descriptiveness

Modularity

Product
operations

 Correctness Traceability

Completeness

Consistency

 Efficiency Execution efficiency

Storage efficiency

 Reliability Consistency

Accuracy

Error tolerance

 Integrity Access control

Access audit

 Usability Operability

Training

Communicativeness

2.2 Boehm’s Quality Model

Boehm [1976, 1978] introduced his quality
model to automatically and quantitatively evaluate
the quality of software. This model attempts to
qualitatively define the quality of software by a
predefined set of attributes and metrics. It consists of
high-level characteristics, intermediate-level
characteristics and lowest-level (primitive)

characteristics which contribute to the overall quality
level (see Figure 2).

In this model, the high-level characteristics
represent basic high-level requirements of actual use
to which evaluation of software quality could be put.
In its high-level, there are three characteristics, that is
[Boehm et al, 1976, Boehm et al, 1978]:
1. As-is utility: to address how well, easily, reliably

and efficiently can I use the software product as-
is?

2. Maintainability: to address how easy is it to
understand, modify and retest the software
product?

3. Portability: to address if can I still use the
software product when the environment has been
changed?

Table 2 shows the contents of the Boehm’s
quality model in the three levels, high-level,
intermediate-level and lowest-level characteristics. In
addition, it is noted that there is a number of the
lowest-level characteristics which can be related to
more than one intermediate-level characteristics, for
example, the ‘Self Contentedness’ primitive
characteristic could be related to the ‘reliability’ and
‘portability’ primitive characteristics.

In the intermediate level characteristic, there
are seven quality characteristics that together
represent the qualities expected from a software
system [Boehm et al, 1976, Boehm et al, 1978]:
1. Portability: the software can be operated easily

and well on computer configurations other than
its current one.

2. Reliability: the software can be expected to
perform its intended functions satisfactorily.

3. Efficiency: the software fulfills its purpose
without waste of resources.

4. Usability: the software is reliable, efficient and
human-engineered.

5. Testability: the software facilitates the
establishment of verification criteria and supports
evaluation of its performance.

6. Understandability: the software purpose is clear to
the inspector.

7. Flexibility: the software facilitates the
incorporation of changes, once the nature of the
desired change has been determined.

The primitive characteristics can be used to
provide the foundation for defining quality metrics,
this use is one of the most important goals established
by Boehm when he constructed his quality model.
One or more metrics are supposed to measure a given
primitive characteristic. Boehm [1978] defined the
‘metric’ as “a measure of extent or degree to which a
product possesses and exhibits a certain (quality)
characteristic.”

Journal of American Science 2010; 6(3)

http://www.americanscience.org editor@americanscience.org 169

Figure 2. The structure of Boehm’s quality model

Table 2. The contents of Boehm’s quality model

High-Level Characteristics Intermediate-Level Characteristics Primitive Characteristics

As-is Utility Reliability Self Containedness
Accuracy
Completeness
Robustness/Integrity
Consistency

 Efficiency Accountability
Device Efficiency
Accessibility

 Human
 Engineering

Robustness/Integrity
Accessibility
Communicativeness

 Portability Device Independence
Self Containedness

Maintainability Testability Accountability
Communicativeness
Self Descriptiveness
Structuredness

 Understandability Consistency
Structuredness
Conciseness
Legibility

 Modifiability Structuredness
Augmentability

3
High-Level

Characteristics

7
Intermediate-Level

Characteristics

15
Distinct Primitive
Characteristics

. . .

. . .

 . . .

Boehm’s Quality Model

High-Level Characteristic 1 High-Level Characteristic 2 High-Level Characteristic 3

Intermediate-Level
Characteristic 1

Intermediate-Level
Characteristic 2

Intermediate-Level
Characteristic N

Lowest-Level
Characteristic 1

Lowest-Level
Characteristic 2

Lowest-Level
Characteristic M

Metric 1 Metric 2 Metric L

Journal of American Science 2010; 6(3)

http://www.americanscience.org editor@americanscience.org 170

2.3 Dromey’s Quality Model
This quality model has been presented by

Dromey [1995, 1996]. It is a product based quality
model that recognizes that quality evaluation differs
for each product and that a more dynamic idea for
modeling the process is needed to be wide enough to

apply for different systems [Dromey, 195].
Furthermore, Figure 3 shows that it consists of four
software product properties and for each property
there is a number of quality attributes. In addition,
figure 4 shows the contents of the Dromey's quality
model.

Figure 3. The structure of Dromey’s quality model

Figure 4. The contents of Dromey’s quality model

2.4 FURPS Quality Model
The FURPS model originally presented by

Robert Grady[1992], then it has been extended by
IBM Rational Software [Jacobson et al, 1999,
Kruchten, 2000] into FURPS+, where the ‘+’
indicates such requirements as design constraints,
implementation requirements, interface requirements
and physical requirements [Jacobson et al, 1999].

In this quality model, the FURPS stands for
[Grady, 1992] - as in Figure 5 - the following five
characteristics:
1. Functionality: it may include feature sets,

capabilities, and security.
2. Usability: it may include human factors,

aesthetics, consistency in the user interface,
online and context sensitive help, wizards and

Implementation

Correctness

Reliability

Maintainability

Efficiency

Reliability

Maintainability

Reusability

Portability

Reliability

Maintainability

Efficiency

Reliability

Usability

Functionality

Descriptive Contextual Internal

. . .

Dromey’s Quality Model

Product Property 1 Product Property 2 Product Property 4

Quality Attribute 1 Quality Attribute 2 Quality Attribute N
. . .

Software Product

Journal of American Science 2010; 6(3)

http://www.americanscience.org editor@americanscience.org 171

agents, user documentation, and training
materials.

3. Reliability: it may include frequency and severity
of failure, recoverability, predictability, accuracy,
and mean time between failures (MTBF).

4. Performance: it imposes conditions on functional
requirements such as speed, efficiency,
availability, accuracy, throughput, response time,
recovery time, and resource usage.

5. Supportability: it may include testability,
extensibility, adaptability, maintainability,
compatibility, configurability, serviceability,
installability, and localizability.

Figure 5. The contents of FURPS quality model

2.5 ISO 9126 Quality Model
In 1991, the ISO published its first

international consensus on the terminology for the

quality characteristics for software product
evaluation; this standard was called as Software
Product Evaluation - Quality Characteristics and
Guidelines for Their Use (ISO 9126) [ISO, 1991].
From 2001 to 2004, the ISO published an expanded
version, containing both the ISO quality models and
inventories of proposed measures for these models.
The current version of the ISO 9126 series now
consists of one International Standard (IS) and three
Technical Reports (TRs):
1. ISO IS 9126-1: Quality Model [ISO, 2001].
2. ISO TR 9126-2: External Metrics [ISO, 2003].
3. ISO TR 9126-3: Internal Metrics [ISO, 2003].
4. ISO TR 9126-4: Quality in Use Metrics [ISO,

2004].
The first document of the ISO 9126 series –

Quality Model – contains two-parts quality model for
software product quality [ISO, 2001]:
1. Internal and external quality model.
2. Quality in use model.

The first part of the two-parts quality model
determines six characteristics in which they are
subdivided into twenty-seven sub-characteristics for
internal and external quality, as in Figure 6 [ISO,
2001]. These sub-characteristics are a result of
internal software attributes and are noticeable
externally when the software is used as a part of a
computer system. The second part of the two-part
model indicates four quality in use characteristics, as
in Figure 7 [ISO, 2001].

Figure 6. ISO 9126 quality model for external and internal quality (characteristics/sub-characteristics) [ISO, 2001]

Figure 7. ISO 9126 quality model for quality in use (characteristics) [ISO, 2001]

Quality in use

Effectiveness Productivity Safety Satisfaction

Maintainability Functionality

 - Suitability
 - Accuracy
 - Interoperability
 - Security
 - Functionality
 Compliance

 Reliability

 - Maturity
 - Fault Tolerance
 - Recoverability
 - Reliability
 Compliance

 Usability

 - Understandability
 - Learnability
 - Operability
 - Attractiveness
 - Usability

Compliance

 Efficiency

 - Time
Behavior

 - Resource
Utilization

 - Efficiency
Compliance

 - Analyzability
 - Changeability
 - Stability
 - Testability
 - Maintainability

Compliance

Portability

 - Adaptability
 - Installability
 - Co-existence
 - Replaceability
 - Portability

Compliance

External and Internal Quality

Functionality

Usability Reliability

Performance

Supportability

 FURPS

Journal of American Science 2010; 6(3)

http://www.americanscience.org editor@americanscience.org 172

Figure 8 shows the ISO view of the expected
relationships between internal, external, and quality
in use attributes. The internal quality attributes
influence on the external quality attributes while the
external attributes influences on the quality in use
attributes. Furthermore, the quality in use depends on

the external quality while the external quality
depends on the internal quality [ISO, 2001].

For the internal and external software
products, each quality characteristics and its
corresponding sub-characteristics are defined in ISO
9126-1 [ISO, 2001] as follows:

Figure 8. Quality in the lifecycle [ISO, 2001]

1. Functionality: “the capability of the software
product to provide functions which meet stated
and implied needs when the software is used
under specified conditions”. It contains the
following sub-characteristics:
a. Suitability: “the capability of the software

product to provide an appropriate set of
functions for specified tasks and user
objectives”.

b. Accuracy: “the capability of the software
product to provide the right or agreed results
or effects with the needed degree of
precision”.

c. Security: “the capability of the software
product to protect information and data so that
unauthorised persons or systems cannot read
or modify them and authorised persons or
systems are not denied access to them”.

d. Interoperability: “the capability of the
software product to interact with one or more
specified systems”.

e. Functionality Compliance: “the capability of
the software product to adhere to standards,
conventions or regulations in laws and similar
prescriptions relating to functionality”.

2. Reliability: “The capability of the software
product to maintain a specified level of
performance when used under specified
conditions”. It includes the following sub-
characteristics:
a. Maturity: “the capability of the software

product to avoid failure as a result of faults in

the software”.
b. Fault tolerance: “the capability of the software

product to maintain a specified level of
performance in cases of software faults or of
infringement of its specified interface”.

c. Recoverability: “the capability of the software
product to re-establish a specified level of
performance and recover the data directly
affected in the case of a failure”.

d. Reliability Compliance: “the capability of the
software product to adhere to standards,
conventions or regulations relating to
reliability”.

3. Usability: “the capability of the software product
to be understood, learned, used, and attractive to
the user, when used under specified conditions”.
It contains the following sub-characteristics:
a. Understandability: “the capability of the

software product to enable the user to
understand whether the software is suitable,
and how it can be used for particular tasks and
conditions of use”.

b. Learnability: “the capability of the software
product to enable the user to learn its
application”.

c. Operability: “the capability of the software
product to enable the user to operate and
control it”.

d. Attractiveness: “the capability of the software
product to be attractive to the user”.

e. Usability Compliance: “the capability of the
software product to adhere to standards,

 influences

Effect of Software Product

Context of use

 depends on

Software Product

 depends on

 influences

 influences

 depends on

Process Measures

 Internal Measures External Measures Quality in use Measures

Process

External
Quality

 Attributes

Quality in
use

 Attributes

Process
Quality

Internal
Quality

 Attributes

Journal of American Science 2010; 6(3)

http://www.americanscience.org editor@americanscience.org 173

conventions, style guides or regulations
relating to usability”.

4. Efficiency: “the capability of the software product
to provide appropriate performance, relative to
the amount of resources used, under stated
conditions”. It includes the following sub-
characteristics:
a. Time behaviour: “the capability of the

software product to provide appropriate
response and processing times and throughput
rates when performing its function, under
stated conditions”.

b. Resource behaviour: “the capability of the
software product to use appropriate amounts
and types of resources when the software
performs its function under stated conditions”.

c. Efficiency Compliance: “the capability of the
software product to adhere to standards or
conventions relating to efficiency”.

5. Maintainability: “the capability of the software
product to be modified. Modifications may
include corrections, improvements or adaptation
of the software to changes in environment, and in
requirements and functional specifications”. It
contains the following sub-characteristics:
a. Analyzability: “the capability of the software

product to be diagnosed for deficiencies or
causes of failures in the software, or for the
parts to be modified to be identified”.

b. Changeability: “the capability of the software
product to enable a specified modification to
be implemented”.

c. Stability: “the capability of the software
product to avoid unexpected effects from
modifications of the software”.

d. Testability: “the capability of the software
product to enable modified software to be
validated”.

e. Maintainability Compliance: “the capability of
the software product to adhere to standards or
conventions relating to maintainability”.

6. Portability: “the capability of the software product
to be transferred from one environment to
another”. It includes the following sub-
characteristics:
a. Adaptability: “the capability of the software

product to be adapted for different specified
environments without applying actions or
means other than those provided for this
purpose for the software considered”.

b. Installability: “the capability of the software
product to be installed in a specified

environment”.
c. Co-existence: “the capability of the software

product to co-exist with other independent
software in a common environment sharing
common resources”.

d. Replaceability: “the capability of the software
product to be used in place of another
specified software product for the same
purpose in the same environment”.

e. Portability Compliance: “the capability of the
software product to adhere to standards or
conventions relating to portability”.

3. Analysis of the Quality Models

In this section, a comparison between the
availability of the characteristics (called factors or
attributes in some quality models) within the five
quality models will be presented. Table 3 presents
this comparison, at the end this table you will find the
number of the corresponding characteristics for each
quality model.

From the 17 characteristics, only one
characteristic is common to all quality models, that
is, the ‘reliability’. Also, there are only three
characteristics (i.e. ‘efficiency’, ‘usability’ and
‘portability’) which are belonging to four quality
models. Two characteristic is common only to three
quality models, that is, the ‘functionality’ and
‘maintainability’ characteristics. Two characteristic
belong to two quality models, that is, the ‘testability’
and ‘reusability’ characteristics. And, nine
characteristics (i.e. ‘flexibility’, ‘correctness’,
‘integrity’ and ‘interoperability’ in McCall’s quality
model; ‘human engineering’, ‘understandability’ and
‘modifiability’ in Boehm’s quality model;
‘performance’ and ‘supportability’ in FURPS quality
model) are defined in only one quality model.

Furthermore, it can be noted that the
‘testability’, ‘interoperability’ and ‘understandability’
are used as factors/attributes/characteristics in some
quality models. However, in ISO 9126-1, these
factors/attributes/characteristics are defined as sub-
characteristics. More specifically, the ‘testability’ is
belonging to the ‘maintainability’ characteristic, the
‘understandability’ is belonging to the ‘usability’
characteristic, and the ‘interoperability’ is belonging
to the ‘functionality’ characteristic.

From our point of view, the ISO 9126-1
quality model is the most useful one since it has been
built based on an international consensus and
agreement from all the country members of the ISO
organization.

Journal of American Science 2010; 6(3)

http://www.americanscience.org editor@americanscience.org 174

Table 3. A comparison between the five quality models

Factors/Attributes/Characteristics McCall Boehm Dromey FURPS ISO 9126

Maintainability � � �

Flexibility �

Testability � �

Correctness �

Efficiency � � � �

Reliability � � � � �

Integrity �

Usability � � � �

Portability � � � �

Reusability � �

Interoperability �

Human Engineering �

Understandability �

Modifiability �

Functionality � � �

Performance �

Supportability �

17 11 7 7 5 6

4. Discussion

There are a number of quality models in
software engineering literature, each one of these
quality models consists of a number of quality
characteristics (or factors, as called in some models).
These quality characteristics could be used to reflect
the quality of the software product from the view of
that characteristic. Selecting which one of the quality
models to use is a real challenge. In this paper, we
have discussed and compared the following quality
models:
1. McCall’s Quality Mode.
2. Boehm’s Quality Model.
3. Dromey's Quality Model.
4. FURPS Quality Model.
5. ISO 9126 Quality Model.

Based on the discussion of the five quality
models and on the comparison between them, the
following comments could be written:
1. In McCall’s quality model, the quality is

subjectively measured based on the judgment on
the person(s) answering the questions (‘yes’ or

‘no’ questions).
2. Three of the characteristics are used in the ISO

9126-1 quality model as sub-characteristics from
other characteristics.

3. The FURPS quality model is built and extended
to be used in the IBM Rational Software
Company. Therefore, it is a special-purpose
quality model, that is, for the benefits of that
company.

4. The metrics in the lower level of the McCall’s,
Boehm’s, Doromey’s and FURPS quality models
are neither clearly nor completely defined and
connected to the upper level of the quality
models. For example, in McCall’s quality model,
the metrics should be clearly and completely
defined and connected to the corresponding
quality criteria, see Figure 1.

The ISO 9126-1 quality model is the most
useful one since it has been build based on an
international consensus and agreement from all the
country members of the ISO organization.

Journal of American Science 2010; 6(3)

http://www.americanscience.org editor@americanscience.org 175

Corresponding Author:
Dr. Rafa E. Al-Qutaish
Al Ain University of Science and Technology – Abu
Dhabi Campus, P.O. Box: 112612, Abu Dhabi, UAE.
E-mail: rafa@ieee.org

References
1. Boehm, B. W., Brown, J. R., Kaspar, H., Lipow,

M., McLeod, G., Merritt, M. Characteristics of
Software Quality. North Holland Publishing,
Amsterdam, The Netherlands, 1978.

2. Boehm, B. W., Brown, J. R., Lipow, M.
Quantitative evaluation of software quality. In
Proceedings of the 2nd international conference
on Software engineering, IEEE Computer
Society, Los Alamitos (CA), USA, 1976; 592-
605.

3. Dromey, R. G. A model for software product
quality. IEEE Transactions on Software
Engineering, 1995; 21:146-162.

4. Dromey, R. G. Concerning the Chimera
[software quality]. IEEE Software, 1996; 13:33-
43.

5. Grady, R. B. Practical Software Metrics for
Project Management and Process Improvement.
Prentice Hall, Englewood Cliffs, NJ, USA, 1992.

6. IEEE. IEEE Std. 610.12: Standard Glossary of
Software Engineering Terminology. The
Institute of Electrical and Electronics Engineers,
New York, NY, USA, 1990.

7. ISO. ISO/IEC IS 9126: Software Product
Evaluation - Quality Characteristics and
Guidelines for their Use. International
Organization for Standardization, Geneva,
Switzerland, 1991.

8. ISO. ISO/IEC 14598-1: Software product
evaluation - Part 1: General overview.
International Organization for Standardization,
Geneva, Switzerland, 1999.

9. ISO. ISO/IEC 9126-1: Software Engineering -
Product Quality - Part 1: Quality Model.
International Organization for Standardization,
Geneva, Switzerland, 2001.

10. ISO. ISO/IEC TR 9126-2: Software Engineering
- Product Quality - Part 2: External Metrics.
International Organization for Standardization,
Geneva, Switzerland, 2003.

11. ISO. ISO/IEC TR 9126-3: Software Engineering
- Product Quality - Part 3: Internal Metrics,
International Organization for Standardization,
Geneva, Switzerland, 2003.

12. ISO. ISO/IEC TR 9126-4: Software Engineering
- Product Quality - Part 4: Quality in Use
Metrics. International Organization for
Standardization, Geneva, Switzerland.
Switzerland, 2004.

13. Jacobson, I., Booch, G., Rumbaugh, J. The
Unified Software Development Process. Addison
Wesley, 1999.

14. Kitchenham, B., Pfleeger, S. L. Software
Quality: the Elusive Target. IEEE Software,
1996; 13: 12-21.

15. Kruchten, P. The Rational Unified Process: An
Introduction. Addison Wesley, 2000.

16. McCall, J. A., Richards, P. K., Walters, G. F.
Factors in Software Quality, Volumes I, II, and
III. US Rome Air Development Center Reports,
US Department of Commerce, USA, 1977.

17. Pressman, R. S. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, New
York, NY, USA, 2004.

18. Petrasch, R. The Definition of Software Quality:
A Practical Approach. In Proceedings of the 10th
International Symposium on Software Reliability
Engineering, 1999; 33-34.

19. Veenendaal, E. V., McMullan, J. Achieving
Software Product Quality, Den Bosch, UTN
Publishers, Amsterdam, The Netherlands, 1997.

Submitted on 12/9/2009

