Proximate and Nutrient Analysis of the Locally Manufactured Herbal Medicines and its Raw Material

Javid Hussain 1, Ali Bahader 1, Farman Ullah 2, Najeeb Ur Rehman 1, Abdul Latif Khan 1, 4 Wasi Ullah 1 and Zabta Khan Shinwari 3

1Department of Chemistry, Kohat University of Science & Technology, Kohat
2Department of Biotechnology, Kohat University of Science & Technology, Kohat
3Department of Biotechnology, Plant Sciences, Quaid-i-Azam University, Islamabad
4School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, Republic of Korea.

* Javid Hussain
javidhej@yahoo.com

Abstract: Herbal medicines have unique therapeutic properties and therefore, used in rural areas to cure different diseases. Proximate analysis and elemental composition of the locally manufactured formulations from Hypericum perforatum, Allium sativum, Zingiber officinalis and Valeriana officinalis were carried out. The heavy metals including Cu, Ni, Zn, Pb, Co, Cd, Fe, and Cr were determined using Atomic Absorption Spectroscopic standard method. Na and Ca was estimated using flame emission spectrophotometer. Z. officinalis has highest percentage of carbohydrate, fats, fiber and energy values while in herbal formulations St. John Wort has the highest. In case of micro analysis, St. John Wort Capsules has highest concentrations of Zn while Valerian has highest concentration of Cu, Co, Cd and Fe compared to others, while in medicinal plant species, the content of Cu, Zn, Co and Fe was highest in V. officinalis. The level of macronutrients (Ca and Na) was highest in St. John Wort Capsule, H. perforatum and V. officinalis. However, the concentration of these nutrients in both the medicinal plants and herbal formations were in the optimum level of WHO standards. [Journal of American Science 2010;6(5):91-96]. (ISSN: 1545-1003).

Keywords: Proximate analysis, herbal formulations, nutrient analysis, Pakistan

1. Introduction

The use of traditional medicines is increasing and getting popularity throughout the developed and developing world (Jia and Zhang, 2005). Herbal medicines as finished labeled medicinal product that contain active ingredients, aerial or underground parts of the plant or other plant material or combinations (Chaudhari, 1996; and Ritch, 2000). About 80% of the people in developing countries rely on traditional medicine for their primary health care (Latif et al., 2004). The worth of herbal product industry is approximately US$ 300 million compared to modern drugs that is US$ 2.5 billions while in recent year it has been gained considerable momentum (Shinwari and Shoukat., 2003; Shinwari et al., 2003; and Shinwari et al., 2006).

Proximate and nutrient analysis of edible fruit and vegetables plays a crucial role in assessing their nutritional significance (Pandey et al., 2006). As various medicinal plant species are also used as food along with their medicinal benefits, evaluating their nutritional significance can help to understand the worth of these plant species (Pandey et al., 2006). As far herbal drug’s standardization is concerned, WHO also emphasize on the need and importance of determining proximate and micronutrients analysis. Such herbal formulations must pass through standardization processes (Niranjan and Kanaki, 2008).

Hypericum Perforatum, Valaneria officinalis, Zingiger officinalis and Allium sativum, are the important plant species used in preparation of herbal formulations (st. john wort, garlicare tablet, ginger
capsule, and valerian capsule). The extract of aerial parts of *H. perforatum* is usually gathered during the flowering season or shortly before and has been used in herbal medicines (Barnes et al., 2001). *Hypericum* extracts are marketed not only as herbal medicine but also in the form of dietary supplements (Shinwari et al., 2006). Garlic or *Allium sativum* is medicinally important plant species i.e. helpful in the treatment and prevention of a number of diseases e.g. cancer, coronary heart diseases, obesity, hypercholesterolemia, hypertension and gastrointestinal (Capasso et al., 2003). *Valeriana officinalis* have a broad range of applications such as a tranquillizer for people with hyper-excitability and as a smooth-muscle relaxing agent to treat stomach and intestine cramp (Leoeniewicz et al., 2006). Valerian is also a component of many herbal mixtures, which are widely used to treat sleeping disorders (Bent et al., 2006). Ginger (*Zingiber officinale*), an important constituent of many herbal formulations, is carminative, pungent, stimulant, used widely for indigestion, stomach ache, malaria and fevers. It is said to be used for abdominal pain, chest congestion, chronic bronchitis, colic and vomiting (Jatoi, et al., 2007). Although, these formulations are providing beneficial effects but without any knowledge of their inorganic constituents.

In the present study, the herbal formulations manufactured by Qarshi Ind. Pvt. Ltd. Pakistan and their raw materials were taken for investigation from the north western part of the NWFP, Pakistan. All these selected plant species based formulations have well documented for their phytochemicals and biological significance but no informations the proximate and elemental data. Keeping in view the importance of the inorganic constituents of the herbal medicines their proximate and elemental analysis were undertaken.

2 Material and Methods

2.1 Sampling

The medicinal plant species were collected from various areas of NWFP Pakistan. The collected plants were packed in the Kraft paper and herbarium sheets were prepared. These plants were identified by a plant taxonomist of Botany Department, Kohat University of Science and Technology, Kohat. The herbal formulations were provided by Qarshi Industries, Pakistan.

2.2 Proximate Analysis

Proximate analysis including moisture, ash, crude fiber, fats, carbohydrates and proteins were determined of both formulations and their respective raw material using AOAC (1990). The moisture contents was determined by oven dehydration method at 105 °C for 5hr using MC (%),

\[W_0 - W_i \times 100 \]

Total ash was determined by weighing the furnace incinerated residue at 550 °C for 12hrs. The formula for calculating the ash in percent is

\[\frac{M_a}{M_s} \times 100 \]

Crude fats were determined using petroleum ether as extracting solvent in soxhlet apparatus. The percentage crude fats were calculated by

\[\frac{M_c}{M_s} \times 100 \]

The crude fibers of the samples were estimated by treating moisture and fats free material with dilute acidic solution followed by dilute base particularly NaOH. After base treatment the residue was filtered and washed with hot water and then ignited. The loss in weight was calculated from the ash left after incineration in the furnace by

\[\frac{W_2 - W_3}{W_1} \times 100 \]

The crude protein was determined using micro Kjeldahl method. Percentage carbohydrate was calculated by 100 – (percentage of ash + percentage of moisture + percentage of fat + percentage of protein). All these methods were adopted, with little modification, from AOAC (1990) and Awan & Salim (1997).

2.3 Elemental Analysis

The samples were digested by a mixture of concentrated nitric acid and perchloric acid mixed in 1:1 v/v ratio. The heavy metals including Cu, Ni, Zn, Pb, Co, Cd, Fe, and Cr were determined using Atomic Absorption Spectroscopic standard method. Na and Ca was estimated using flame emission spectrophotometer.

3. Results and Discussions

3.1 Weights of the products

The weight variation among 10 tablets of the selected four herbal formulations is presented in Table 1. The data reveals that there was large difference from tablet to tablet as indicated by their corresponding standard deviation but comparatively ginger tablets shows less variation.
3.2 Analysis of herbal product

The proximate data for all formulations is tabulated in Table 2 and their respective raw material in the Table 3. The moisture contents was noted highest in Ginger and Valerian capsules i.e. 7.26±0.09 and 7.14±0.05% respectively. The fats contents were found highest in St. John Wort and Valerian tablets i.e. 4.98±0.01 and 4.0±0.03 respectively (Table 2). Looking at the results of carbohydrates, it was highest in St. John Wort Capsule, and (79.37±0.09 and 76.41±0.25). Comparing the crude fiber, it was higher in St. John Wort Capsule and Valerian Tablets (14.33±0.24 and 18.60±0.22 respectively). The protein contents of St. John Wort Capsule and Ginger Tablets was 6.66±0.04 and 8.60±1.0 respectively. The details of other proximate parameter are given Table 2.

The moisture, fats, crude protein, carbohydrates and ash concentrations of the ginger tablets are comparable (6.9%, 8.6%, 6.4%, 72.40% and 5.7%) to the value reported in the Encyclopedia of Chemical Technology (1980). The moisture contents of the Allium sativum was found 67.66±0.18 and Valeriana officinalis was 6.82±0.09. The fats contents of the Allium sativum and Valeriana officinalis was found 2.43±0.11 and 4.14±0.09% respectively. The carbohydrate contents of the Allium sativum and Valeriana officinalis was found 14.98±0.06 and 67.52±0.07 respectively. The fibre contents of the Allium sativum was found 2.43±0.07 and Valeriana officinalis was 16.78±0.09. The ash contents of the Allium sativum and Valeriana officinalis was 1.73±0.16 and 17.10±0.08 respectively. The calorific value of the Allium sativum and Valeriana officinalis was estimated 134.60±0.65 and 324.95±0.52 respectively.

It is essential to quantify the level of toxic trace elements in medicines directly derived from the herbal source and used as it is, due to its deleterious effects upon human health. All the four formulations were analyzed for heavy metal and essential mineral contents. The concentration of Cu, Ni, Zn, Pb, Co, Cd, Fe, and Cr in St. John Wort was 25.4, <0.006, 78.2, <0.015, 2.6, <0.0008, 1020.4 and <0.003 ppm respectively. The Ca and Na in St. John Wort was 192 and 14.84 ppm respectively.

3.3 Medicinal plant species

The moisture contents of the Allium sativum was found 67.66±0.18 and Valeriana officinalis was 6.82±0.09. The fats contents of the Allium sativum and Valeriana officinalis was found 2.43±0.11 and 4.14±0.09% respectively. The carbohydrate contents of the Allium sativum and Valeriana officinalis was found 14.98±0.06 and 67.52±0.07 respectively. The fibre contents of the Allium sativum was found 2.43±0.07 and Valeriana officinalis was 16.78±0.09. The ash contents of the Allium sativum and Valeriana officinalis was 1.73±0.16 and 17.10±0.08 respectively.

The moisture contents of the Allium sativum was found 67.66±0.18 and Valeriana officinalis was 6.82±0.09. The fats contents of the Allium sativum and Valeriana officinalis was found 2.43±0.11 and 4.14±0.09% respectively. The carbohydrate contents of the Allium sativum and Valeriana officinalis was found 14.98±0.06 and 67.52±0.07 respectively. The fibre contents of the Allium sativum was found 2.43±0.07 and Valeriana officinalis was 16.78±0.09. The ash contents of the Allium sativum and Valeriana officinalis was 1.73±0.16 and 17.10±0.08 respectively.

The moisture contents of the Allium sativum was found 67.66±0.18 and Valeriana officinalis was 6.82±0.09. The fats contents of the Allium sativum and Valeriana officinalis was found 2.43±0.11 and 4.14±0.09% respectively. The carbohydrate contents of the Allium sativum and Valeriana officinalis was found 14.98±0.06 and 67.52±0.07 respectively. The fibre contents of the Allium sativum was found 2.43±0.07 and Valeriana officinalis was 16.78±0.09. The ash contents of the Allium sativum and Valeriana officinalis was 1.73±0.16 and 17.10±0.08 respectively.

3.4 Nutrient Analysis

3.4.1 Micro-Nutrient in Herbal Products

The amount of Cu, Ni, Zn, Pb, Co, Cd, Fe, and Cr in Garlicare tablets were 12.2, 5.8, 38.2, <0.015, <0.009, <0.0008, 142 and <0.003 ppm respectively. The amount of mineral including Ca and Na in the Garlicare tablets is 64.77 and 7.78 ppm respectively. The quantity of Cu, Ni, Zn, Pb, Co, Cd, Fe, and Cr in Ginger Capsules were 19, 9.4, 52.6, 13.6, <0.009, 0.0008, 226.8 and <0.003 ppm respectively. The quantity of Na and Ca in the Ginger capsule are 5.88 and 74.62 ppm respectively. The concentration of Cu, Ni, Zn, Pb, Co, Cd, Fe, and Cr in Valerian Capsule were 58, <0.006, 55, <0.015, 9.8, 0.2, 1681.8, and <0.003 ppm respectively.

In all four samples the chromium (Cr) concentration was very low, while the Cd concentration is also low except in valerian capsule with value of 0.2 ppm. Cadmium concentration of 0.2 ppm is also not in the limits set by WHO because the daily intake of 0.06–0.07 mg/day is permissible (FAO, 1993). The level of lead (Pb) is also below the permissible level in St. John wort capsule, garlicare and valerian tablets but higher in the ginger tablets with recorded value of 13.6 ppm. This is exceptionally high because the WHO acceptable daily intake of Pb

Table 1. Variation in the average weight of a single

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Product name</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>St. John Wort</td>
<td>424.89 ± 1.93</td>
</tr>
<tr>
<td>2</td>
<td>GarliCare Tablet</td>
<td>573.84 ± 1.98</td>
</tr>
<tr>
<td>3</td>
<td>Ginger Capsule</td>
<td>625.85 ± 1.74</td>
</tr>
<tr>
<td>4</td>
<td>Valerian Capsule</td>
<td>426.13 ± 1.23</td>
</tr>
</tbody>
</table>

± = standard deviation; Means of ten Tables

http://www.americanscience.org

93

editor@americanscience.org
for adults was 0.21-0.25 mg/day (FAO, 1993). It is well reported in the literature that Pb has pronounced ill effects on the central nervous system especially in children (FAO, 1993).

The range of Ni obtained in this study was lower than 0.05–5 mg/kg reported for plant foods by the National Academy of Sciences in case St. John wort and valerian tablet where it is <0.006; in case of

Table 2. Proximate Analytical Data of the Selected Herbal formulations (in percentage)

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Moisture</th>
<th>Crude Fat</th>
<th>Carbohydrate</th>
<th>Fibre</th>
<th>Protein</th>
<th>Ash</th>
<th>Energy Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. John Wort</td>
<td>4.11±0.09</td>
<td>4.98±0.01</td>
<td>79.37±0.09</td>
<td>14.33±0.24</td>
<td>6.66±0.04</td>
<td>4.89±0.05</td>
<td>389.30±0.68</td>
</tr>
<tr>
<td>GarliCare Tablet</td>
<td>2.75±0.12</td>
<td>3.53±0.23</td>
<td>70.24±0.17</td>
<td>1.07±0.03</td>
<td>4.34±0.09</td>
<td>19.15±0.18</td>
<td>330.10±2.2</td>
</tr>
<tr>
<td>Ginger Capsule</td>
<td>7.26±0.09</td>
<td>3.60±0.13</td>
<td>76.41±0.25</td>
<td>4.24±0.12</td>
<td>8.60±1.0</td>
<td>4.13±0.06</td>
<td>372.40±0.84</td>
</tr>
<tr>
<td>Valerian Capsule</td>
<td>7.14±0.05</td>
<td>4.00±0.03</td>
<td>69.46±0.13</td>
<td>18.60±0.22</td>
<td>5.14±0.02</td>
<td>14.27±0.15</td>
<td>334.39±0.76</td>
</tr>
</tbody>
</table>

Table 3. Proximate Analytical Data of the Raw material used in the selected Medicines

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Moisture</th>
<th>Fats</th>
<th>Carbohydrate</th>
<th>Fibre</th>
<th>Proteins</th>
<th>Ash</th>
<th>Energy Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. perforatum</td>
<td>8.31±0.06</td>
<td>5.06±0.08</td>
<td>72.2±0.09</td>
<td>13.0±0.00</td>
<td>9.54±0.16</td>
<td>4.54±0.014</td>
<td>374.09±0.06</td>
</tr>
<tr>
<td>A. sativum</td>
<td>67.66±0.18</td>
<td>2.43±0.11</td>
<td>14.98±0.06</td>
<td>2.43±0.07</td>
<td>13.2±0.04</td>
<td>1.73±0.16</td>
<td>134.60±0.65</td>
</tr>
<tr>
<td>Z. officinalis</td>
<td>9.21±0.07</td>
<td>7.30±0.07</td>
<td>72.36±0.04</td>
<td>16.36±0.03</td>
<td>7.27±0.07</td>
<td>4.83±0.07</td>
<td>380.3±0.06</td>
</tr>
<tr>
<td>V. officinalis</td>
<td>6.82±0.09</td>
<td>4.14±0.09</td>
<td>67.52±0.07</td>
<td>16.78±0.09</td>
<td>4.39±0.09</td>
<td>17.10±0.08</td>
<td>324.95±0.52</td>
</tr>
</tbody>
</table>

Table 4. Nutrient concentration (ppm) of the preparations

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Cu</th>
<th>Ni</th>
<th>Zn</th>
<th>Pb</th>
<th>Co</th>
<th>Cd</th>
<th>Fe</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. John Wort Capsules</td>
<td>25.4</td>
<td><0.006</td>
<td>78.2</td>
<td><0.015</td>
<td>2.6</td>
<td><0.0008</td>
<td>1020.4</td>
<td><0.003</td>
</tr>
<tr>
<td>GarliCare Tablet</td>
<td>12.2</td>
<td>5.8</td>
<td>38.2</td>
<td><0.015</td>
<td><0.009</td>
<td><0.0008</td>
<td>142</td>
<td><0.003</td>
</tr>
<tr>
<td>Ginger Tablet</td>
<td>19</td>
<td>9.4</td>
<td>52.6</td>
<td>13.6</td>
<td><0.009</td>
<td><0.0008</td>
<td>226.8</td>
<td><0.003</td>
</tr>
<tr>
<td>Valerian Tablet</td>
<td>58</td>
<td><0.006</td>
<td>55</td>
<td><0.015</td>
<td>9.8</td>
<td>0.2</td>
<td>1681.8</td>
<td><0.003</td>
</tr>
</tbody>
</table>

garlicare it not very high but the value in terms of ginger tablets is very alarming of 9.4 ppm (WHO, 1998; and Pizzaro et al., 1999). Globally the dietary intake of copper (Cu) in healthy non occupational exposed population vary between 0.9-2.2 mg/day (Pizzaro et al., 1999).
The level of copper in all formulations is very high than the acceptable range set by WHO of 2-5 mg intake per day (WHO, 1998; Cantilli, et al., 1994). It has been reported that Cu consumption in excess of 3 ppm of drinking water result in nausea and other adverse effects on the gastrointestinal tract (GIT) (Pizzaro, et al., 1999). The levels of Zn found in the formulations are also not in line with the WHO values of 2-5 mg intake per day. There is no documented evidence of adverse health effects from the intake of Zn normally found in various diets consumed world wide. But chronic zinc ingestion i.e. 300mg/day for six weeks cause suppression of the immune system and decrease in high density lipoproteins (Cantilli et al., 1994).

3.4.2 Macro-Nutrients in Herbal Drugs

The mineral contents comprising sodium and Calcium found in the valerian capsule was 8.942 and 67.1 ppm respectively. The recommended daily intake level of iron (Fe) outlined by WHO is about 10-30 mg/day (Cantilli et al., 1994). Keeping in view the recommended level, all of the samples shows high iron contents but comparatively in garlicare and ginger tablets is low, although not very low to be recommended for consumption. The acute chronic dose of iron in infants has been estimated to approximately 20mg/kg and the lethal dose of about 200-300 mg/kg body weight. The chronic iron overloads result in hepatomegaly, cardiac disease and liver cirrhosis (Weber, 1988). The level of Ca lay down by WHO is 450-1200 mg/day, which in agreement to the one found in formulations as indicated in the Table 5.

Table 6. Micro Nutrients in Medicinal Plants (ppm)

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Ca</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. John Wort Capsule</td>
<td>192</td>
<td>14.84</td>
</tr>
<tr>
<td>Garlicare Tablet</td>
<td>64.77</td>
<td>7.78</td>
</tr>
<tr>
<td>Ginger Tablet</td>
<td>74.62</td>
<td>5.88</td>
</tr>
<tr>
<td>Valerian Tablet</td>
<td>67.1</td>
<td>8.942</td>
</tr>
</tbody>
</table>

The highest concentration of micronutrients e.g Cu, Ni, Zn, Pb, Co and Fe were found in V. officinalis followed by H. perforatum as shown in the Table 6.

Table 7. Macro Nutrients in medicinal plants (ppm)

<table>
<thead>
<tr>
<th>Specie Name</th>
<th>Ca</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. perforatum</td>
<td>192</td>
<td>14.84</td>
</tr>
<tr>
<td>A. sativum</td>
<td>40.31</td>
<td>8.44</td>
</tr>
<tr>
<td>Z. officinalis</td>
<td>11.96</td>
<td>9.33</td>
</tr>
<tr>
<td>V. officinalis</td>
<td>176.9</td>
<td>16.32</td>
</tr>
</tbody>
</table>

The Ca concentration in H. perforatum was found the highest among all the medicinal plants having 192 ppm concentration followed by V. officinalis, A. sativum, and Z. officinalis has the concentration of 176.9, 40.31 and 11.96 ppm (Table 7). In case of Na, V. officinalis has the highest concentration of 16.32 ppm followed by H. perforatum, which has a concentration of 14.84 ppm (Table 7).

The findings of the proximate contents of most of the species analyzed in present study were almost complying with the previous reports (Odhav et al., 2007; and Odebunmi et al., 2009). The difference in the analysis might be attributed to the conditions on which the plant species is harvested along with environmental parameters (Nordeide et al., 1996).

Acknowledgements

The authors wish to thank the Higher Education Commission, Government of Pakistan, for providing financial support for the current study under the National Research Program for Universities (NRPU).

References