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Abstract: In this paper we are proposing the use of the Empirical Mode decomposition method as a tool for 
potential field data separation. The empirical mode decomposition (EMD) is a new data analysis method suitable to 
process non-stationary and nonlinear data. Its power to filter and decompose data has earned it a high reputation in 
signal processing. Its decomposition results in what is called “Residual”, which is similar to the regional anomaly of 
a potential field data. This residual does not require any preset parameters unlike contemporary field separation 
methods. The method is applied to a magnetic data from the Jianshandian mine in Hubei, China enabling us to 
construct a 2.5D inverse model inferring the existence of deep ore deposits. The method is effective at separating 
both local and regional data from magnetic data. [Journal of American Science 2010;6(7):183-187]. (ISSN: 1545-
1003). 
. 
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1.0 Introduction 
 
        Geophysical potential field separation is a 
process in which the regional and the local anomalies 
are separated. Generally, regional anomaly is 
associated with a larger amplitude and scope but 
smaller horizontal gradient caused by the widely 
distributed mid-deep sources; while the local 
anomaly is vice versa. There are several field 
separation methods in use today based on Fourier or 
wavelet transforms. The Fourier transform (FFT) is 
designed to work with linear and stationary signals. 
The wavelet transform, on the other hand, is well-
suited to handle non-stationary data, but it is poor at 
processing nonlinear data (Hassan and Pierce, 2008). 
Prominent among these methods are Polynomial 
fitting, moving average, upward and downward 
continuation and wavelength filtering. The regional 
anomalies obtain via these methods depend largely 
on preset parameters. Moreover, geophysical data are 
nonlinear and non stationary. 
        The combination of the well-known Hilbert 
spectral analysis (HAS) and the recently developed 
empirical mode decomposition (EMD) [Huang et al., 
1996, 1998, 1999], designated as the Hilbert-Huang 
transform (HHT) by NASA, indeed, represents a 
paradigm shift of data analysis methodology. The key 
part of HHT is EMD with which any complicated 
data set can be decomposed into a finite and often 
small number of intrinsic mode functions (IMFs). 

This decomposition method is adaptive and therefore 
highly efficient. As the decomposition is based on the 
local characteristics of the data, it is applicable to 
nonlinear and nonstationary processes. Contrary to 
almost all the previous decomposition methods, EMD 
is empirical, intuitive, direct, and adaptive, without 
pre-determined basis functions (Huang & Wu., 
2008). It has been applied in severals fields such as 
meteorology (Iyengar and. Kanth,2005), signal 
processing (Linderhed, .2004),and geosciences 
(Hassan and Pierce, 2008) The decomposition is 
designed to seek the different simple intrinsic modes 
of oscillations in any data based on local time scales. 
A simple oscillatory mode is called intrinsic mode 
function (IMF) which satisfies: (a) in the whole data 
set, the number of extrema and the number of zero-
crossings must either equal or differ at most by one; 
and (b) at any point, the mean value of the envelope 
defined by the local maxima and the envelope 
defined by the local minima is zero. The residual 
value obtained by removal of a series of IMFs is the 
trend component that represents the average trend, 
which is similar to the geophysical regional anomaly. 
In light of the power of the EMD as a decomposer, 
we are proposing its use as a potential field separator. 

2.0        Material and methods 

2.1 Study Area 
  Our area of study is Jinshandian ore mine in 

located in Hubei, China and characterized as a typical 
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contact metasomatic deposit bed. It is distributed in 
or around the contact zone of the monzonite granite 
and Triassic sandstone and shale (fold in the 
carbonate rocks), with a north-west (NW) strike 
direction and a length of 3km approximately (Fu et 
al, 2008) It contains several cluster of deposits. It is 
an open mine and extraction of mineral has been 
ongoing reaching a depth of 400m. Based on the 
geological background, ore geology, gravity and 
magnetic abnormities and coupled with a large scale 
residual gravity and magnetic anomaly, it is predicted 
that concealed ore bodies could be at greater depth 
than those already known. Profile AA’ is taken in the 
southern portion away from the main ore body to 
deduce the presence of magnetite at this part (fig.1).  

 
 

Figure 1: Aeromagnetic map of 
Jianshandian showing profile AA’ 
 
2.2        Principle of the EMD 
 
        The EMD is an adaptive decomposition 
technique with which any complicated signal can be 
decomposed into a definite number of high-frequency 
and low frequency components by means of a 
process called “sifting”. The sifting process 
decomposes the original signal, S(x), into a number 
of intrinsic mode functions (IMFs) according to the 
following formula: 
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Where  rn(x) is the residual after n IMFs and ci(x) the 
IMFs. 
These IMFs have well-behaved Hilbert transforms 
and are defined as functions that:  
( a) have the same number of zero- crossings and 
extrema, and  
( b) the mean value of the upper and the lower 
envelopes is equal to zero. 

        A sifting process extracts IMFs from the signal 
iteratively sequentially to obtain a component that 
satisfies conditions mentioned above. The sifting 
process separates the IMFs with decreasing order of 
frequency, i.e., it separates high frequency 
component first and the low frequency component at 
the end. The IMFs obtained by sifting processes 
constitute an adaptive basis. This basis usually 
satisfies empirically all the major mathematical 
requirements for a time series decomposition method, 
including convergence, completeness, orthogonality, 
and uniqueness, as discussed by Huang et al. [1998]. 
The EMD technique (Huang et al., 1998) is 
illustrated in Figure 2 for a simple signal consisting 
of chirp. The technique happens to naturally cope 
with superimposed smooth trends (Flandrin, P., 
Rilling, G., and Gonçalvés, P., 2004). The 
decomposition of the signal into IMFs is performed 
as follows: 

1. Identify the positive peaks (maxima) and 
negative peaks (minima) of the    original 
signal. 

2. Construct the lower and the upper envelopes 
of the signal by the cubic spline method.    
(U(t), L(t)) 

3. Calculate the mean values by averaging the 
upper envelope and the lower envelope. 

          m(t)= (U(t) + L(t))/2  
4. Subtract the mean from the original signal to 

produce the first intrinsic mode function 
IMF1 component. S(t) – m(t) = h(t)  note 
h(t) =IMF1 

5. Calculate the first residual component by 
subtracting IMF1 from the original signal. 
This IMF1 component is treated as a new 
data and subjected to the same process 
described above to calculate the next IMF.  
S(t) – h(t)  = r(t) 

6. Repeat the steps above until the final 
residual component becomes a monotonic 
function and no more IMFs can be extracted. 

        The sifting process produces a set of IMFs that 
represent the original data vector broken down into 
frequency components from highest to lowest 
frequency. This process is subject to a symmetry 
condition called the stoppage (of sifting criteria) 
which is a normalized squared difference between 
two successive sifting operations. In this paper we 
use the one by Huang et al (1998) giving as: 
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A value of 0.2 ~ 0.3 for SD is considered acceptable 
for a calculated IMF, that is h(t).  If all of the IMFs 
for a given signal are added together, the resulting 
“summation” signal is a near perfect match for the 
original signal (i.e., with little or no leftover), 
yielding a high level of confidence in the EMD 
results. 
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Figure 2:  An empirical mode decomposition (EMD) 
of a signal producing five IMFs and a residual. The 
first curve is the plot of a chirp 

3.0        Result and Discussion 

        To separate the regional and the local anomalies 
from the superinposed total magnetic anomaly profile 
, we use the Empirical Mode Decoposition resulting 

into seven IMFs and a residual(fig. 3), which is 
equivallent to the regional anomaly when applying 
conventional mehtods. The same profile was 
seperated using  trend analysis and the result showed 
that the lacal and the original anomalies are almost 
the same signifiyingthat the complexity of the 
anomaly was due largely to shalow 
sources.
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 Figure 3: An Empirical mode decomposition of 
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profile AA’ showing seven IMfs and a residual. The 
topmost graph is the anomaly of the magnetic profile. 

 

 
Figure 4:  A trend analysis field seperation of profile 
AA’. The top is the total anomaly, the middle is the 

local anomaly and the bottom is the reginal anomaly.  
 
          The anomaly(fig.4) produced as a result of 
profile AA’ clearly shows serious suprficial 
interferences  and the presence of shallow bodies thus 
resulting to an abnormal complex form. Fitting such 
curves to the theoritical values and infering deep 
sources can sometimes be difficult. However, from 
magnetic survey and the drilled core, 
blastopsammite, hornfels, skarn (with thin magnetite) 
as well as some other rocks, such as diorite, diorite 
porphyrite and diabase are known to be  interbeded in 
the sandstone at the south edge of this area. They 
possess some degree of magnetism, which is the main 
factor  of influence. 

   Magnetic parameters were based on the above 
analysis and in consideration of the drill core results 
in constructing the 2.5D forward and inverse models 
(fig. 5 & 6). Since the local anomaly is similar to the 
total anomaly, this indicates that the local anomaly 
mainly reflects the anomaly of the rocks and deposits 
at shallow depth. From 2.5D inverse model based on 
the EMD residual, which is similar to the regional 
anomaly obtained via trend analysis, we deduce that 
there may be 2 unknown iron deposits at greater 
depths. The deposits colored red and yellow have 
different magnetizations. The one marked yellow was 

partially penetrated during drilling and found to be 
iron III. We believe that a thick section of magnetite 
lie beneath this low grade. ore below the level of -
400m (Fig.6), which is in conformity with 
assumptions based on potential field data analysis in 
the area (Fu Qunhe,Li Langtian, Kuang Qingguo, 
Zhao Zhixiang  2008). 

Dril position magnetite I Magnetite III Diorite prophyrite
Skarn

TheoriticalObserved

magnetite II  
Figure 5:  2.5D forward model of the profile AA’. 
The black lines indicate drill positions  

 

 
Figure 6: 2.5d inverse model based on the the 
residual of the EMD 
 
4.0         Conclusion 
        In this paper, the EMD is proposed and applied 
in the separation of geophysical potential field 
superimposed anomalies caused by several 
anomalous sources. The EMD is a new and powerful 
technique use to analyze nonlinear and non-stationary 
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signals such as potential field data. It decomposes the 
signal to a summation of zero-mean AM-FM 
components, called Intrinsic Mode Functions (IMF). 
These IMFs show the main components of the 
analyzed signal The EMD was applied to a magnetic 
data from Jianshandian iron deposit in Hubei, China  
and found to be effective at separating the local and 
regional from magnetic data and the result was 
compared to that of trend analysis and found to be 
similar. The separation was carried out without any 
pre-set parameters as done in traditional separation 
methods. A 2.5D inverse model was realized from 
the residual of the EMD resulting into an inference of 
ore bodies at greater depth below 400m. 
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