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Abstract: In this paper a hybrid neural network and rule based approach for spurious trips minimization in hard real 
time systems such as nuclear reactor power plants is proposed. This approach is a hybrid or a mix of rule base and 
neural network. The purpose is to learn from experience in the same way as humans learn from their past experience 
in operation of nuclear power plant. The approach would use artificial neural network as well as a rule based 
approach for intelligent decision-making. The patters of data will be taken from the modern control systems like 
DCS, PLC etc. via OPC and is fed to the trained ANN. The output of the algorithm will be a optimized decision. 
The operator can improve his decision making based on suggested values by the Algorithm. [Journal of American 
Science 2010;6(7):281-286]. (ISSN: 1545-1003). 
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1 Introduction 
Whenever accidents occur in nuclear power 

plants [12], operators will attempt to detect the 
seriousness by observing drifts of parameters 
presented on HMIs to obtain first hand information of 
plant’s current status which may steer towards 
accident [10]. The shift operators are unaware of 
whole data statistics about all parameters and only 
have a partial future trend behavior so, it is extremely 
hard for operators to forecast the development of the 
proceedings by just looking at time-based tendency 
of some important variables on huge sized mimics in 
the main control room [7], [8]. Also, in this brief time 
abnormality, hundreds of parameter values coming 
from instruments will be looked after by that will 
show some characteristic patterns of that momentary 
transient [33] , [26]. In most of the situations for 
severe accidents of nuclear power plants operators 
should be able to accurately forecast transient 
scenarios [33], so that they can make accurate 
decisions regarding safety of personnel as well as 
reliable operation of the plant [12]. Normally the 
operators always go for easy decisions like shutting 
down the power plant. Shutting down a nuclear 
power plant always costs a huge revenue loss to 
owner as well as power shortage to countries, already 
facing energy crisis, like Pakistan [15]. Unlike 
thermal power plants nuclear power plants always 
take more time to operational state again. So it is the 
need of the hour to efficiently operate the plant and to 
minimize nuclear power plant shutdowns. This can 
be achieved by taking advantage of latest research 
trends [4]. Lots of power plants in the world are using 
artificial intelligence techniques to improve the 
reliability and to minimize the plant outages. 

Alexander G. Parlos & Benito Fernandez, used ANN 
for control & identification of various components of 
Nuclear Power Plant [14], [17]. Lots of  AI 
methods/techniques comprising of ANN and 
techniques/methods of fuzzy inference to numerous 
nuclear engineering regions have been utilized 
fruitfully, such as optimal fuel loading [29], [30], 
[25] & [26], plant diagnostics [27], [28] , power plant 
control [31], signal validation [24], event 
identification [23], [32], [33], and so on. A few more 
applications of neural networks to nuclear power 
plant’s engineering structures can also be found in 
the references [18], [19], [20], [21], and [22]. 
 
2 Background of the problem 

The KANUPP (Karachi NUclear Power Plant), 
which is a CANDU type reactor [5], [3], was in total 
control of Pakistani engineers and scientists after 
Canadians left our country. Lots of challenges were 
encountered by the plant in its operation. After the 
sanction from key nuclear countries we lost vendor 
support in 1976 [15], for the purpose of repair, 
modifications, or maintenance the plant shutdown 
kept for long time. In this hard period our committed 
self-belief in PAEC employees took plant to its old 
operational status [15]. Throughout its operational 
history although there is no major accident occurred 
but plant faced many spurious shutdowns, which 
could have been avoided through better decision-
making. These spurious shutdown decisions have 
caused PAEC a great amount of revenue loss over its 
operational history [9], [15]. So the task is to 
minimize spurious shutdowns by using artificial 
intelligence techniques that will assist the operators 
towards better decision-making. A central control 
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was there to monitor the plant. A twenty square meter 
room was used as control center for a single-unit 
CANDU. 2 walls were dedicated for the instruments 
panels. There was a main work area in control room 
dedicated to operators & their assistants. [34]. All 
aspects of the plant are controlled by operator from 
this central seat. Several resources and systems are 
there to provide information to the operator. Status of 
the plant is inferred from panel locations and consol 
workstations. The plant operator has to keep an eye 
on numerous parameters before taking a major 
decision (such as shutdown) in abnormal condition. 
These days KANUPP is not operated at full power 
(i.e 137Mwe). It is operated only at 90 MWe these 
days. Table 1 displays the list of only important 
parameters [9], [15].  

Still there are lots of parameters not shown. So 
taking a decision based on that much number of 
parameters is a difficult task. Some times an 
abnormal shift in the value of a parameter can be 
ignored if some other parameter values are normal 
and some time only a single parameter value (e.g 
PHT outlet temperature 580 F) becomes so important 
that the operator takes an important decision. 

Because the abnormal situations arises less in the 
operational history so data patterns noted and the 
corresponding decisions taken are in less number. 
Therefore the task is to achieve higher accuracy with 
small training data samples for and ANN [6], [1]. 
 
3 The Proposed hybrid Methodology 

The proposed methodology is actually a hybrid 
of two AI methodologies. This is neural network plus 
rule-based [6]. The desired patterns of data collected 
from the power plant operational history data are 
used as the training the artificial neural network using 
Backpropagation algorithm [13], [6], [16], [11], [2]. 
Then that trained artificial neural network in 
combination with rule based approach is used in the 
final decision making in plants shutdown. This 
methodology has been proposed to solve the spurious 
reactor trips problem in the KANUPP [9]. The 
purpose of introducing this hybrid methodology is to 
improve the decision making ability of the power 
plant operators. This will ultimately help in 
minimizing the spurious reactor trips and therefore 
the loss of revenue. 

 
 

 
 
 
4 Case Study 

As a case study we considered the operational 
data of KANUPP. There are hundreds of the 

parameters in the nuclear power plant [9], we 
mention some of the variables used as input to the 
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Figure 1: The proposed hybrid approach 
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artificial neural network are listed in table 1 shown below.  
 

Table 1: List of some parameters used in the training data 

SN Parameters 
Normal 

operating 
values 

1 Electrical Power (MWe) 90 
2 Moderator Level  182 
3 Moderator temp (F) 140 
4 PHT inlet temperature (F)  478 
5 PHT outlet temperature (F) 535 
6 Steam Pressure (psi) 550 
7 Steam Temp (F) 474 
8 Calendria spray flow (igpm) 1500 
9 Boiler feed water pressure (psi) 900 
10 Condensate water pressure (psi) 200 
11 Turbine RPM 3000 
12 Generator RPM 3000 
13 Boiler feed water pressure (psi)  900 
14 Condensate water pressure (psi) 200 
15 Exhaust hood temp (F) 110 
16 Charging tank level 127 
17 Charging tank temp (F) 140 
18 Generator hydrogen pressure (psi) 30 
19 Turbine shell expansion (mil) 210 
20 Hydrogen seal differential pressure (psi) 8.5 

 
The values listed in table 1 are the normal operating 
values. The training data samples for transient or 
abnormal conditions have been generated through the 
simulator. The total number of training data samples 
generated through the simulator is 255 [35]. Data has 
been divided into training, validation, and test sets. 
Out of these samples 60% are used for training, 20% 
for testing and the remaining 20% for validation [16]. 
In order to ensure that there is no over fitting the 
validation data set is utilized. To independently 
measure how well the ANN can perform on a data 

that have never been used in its training, a test set is 
used. 

 
5 Results & Discussion 
5.1 Optimizing the Number of Hidden nodes 

The optimized value for the number of hidden 
nodes for this specific problem is found through a 
series of experiments for the Levenberg-Marquardt 
backpropagation. The results are shown in the table 
2. 

 
             Table 2: Results for different no. hidden nodes. 

No. of 
Hidden 

Neurons 

Execution 
time 

Regression 
Coefficient Epochs Comments 

14 41.432071 0.8668 27 Validation stop 
15 42.502456 0.8733 24 Validation stop 
16 61.86331 0.9736 32 Validation stop 
17 41.658935 0.9512 19 Validation stop 
18 36.618649 0.9794 15 Validation stop 
19 33.517457 0.9943 12 Validation stop 
20 16.929745 0.9976 5 Performance goal met 
21 21.89272 0.9973 6 Performance goal met 
22 20.199239 0.9977 5 Performance goal met 
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23 26.361702 0.9974 6 Performance goal met 
24 27.891669 0.9977 6 Performance goal met 
25 43.87587 0.9974 6 Performance goal met 
26 32.988149 0.9973 6 Performance goal met 
27 34.791656 0.998 6 Performance goal met 
28 37.71092 0.9963 6 Performance goal met 
29 40.136347 0.9984 6 Performance goal met 
30 42.629025 0.9972 6 Performance goal met 
31 46.077593 0.9967 6 Performance goal met 
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Figure 2: Plot of No. of hidden neurons against 
execution time & Epochs 
 
 

From the table 2 it is clear that numbers of 
hidden nodes are insufficient up to 19. The 
performance goal was only met when the number of 
hidden neurons are 20 or above. From the figure 1 it 
is clear that the optimized numbers of hidden nodes 
are 20 for this specific problem. Below twenty there 
are not enough number of hidden neurons that are not 
sufficient to solve this problem. It means that the 
there are not enough number of nodes that can store 
all the features present in the input patterns. Hidden 
nodes are actually the feature detectors of the input 
pattern vectors. So as the size of the input pattern 
vector increases the required number of optimized 
hidden neurons also increases. It is also clear from 
the above figure that as we increase the no. of hidden 
neuron beyond the optimized number, the execution 
time increases. Also the storage requirement for 
hidden neurons is increased which in turn affects the 
system response time, and that will be fatal if you are 
dealing with a system that require a real time 
response.   
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Figure 3: Plot of No. of hidden neurons against 
regression coefficient  
 

Also from the figure 2 it is clear that 
regression coefficient has reached its maximum value 
when the no. of hidden nodes is 20. If we further 
increase the number of hidden nodes the regression is 
the same, i-e reached its maximum value. Value one 
mean a perfect match. Therefore it is useless to 
further increase the hidden nodes. Therefore it is the 
optimized number for this particular example. 
 
5.2 Performance Comparison of different 

neural network training algorithms  
Different backpropagation algorithms have 

been employed for the training of this nuclear power 
plant data [36]. The following table shows the results 
collected by implementing various algorithms. For 
this comparison case study the performance goal was 
set = 0.001, it is clear from the table 2 that the first 
three training algorithms were not able to meet the 
performance goal. The remaining training algorithms 
all met the performance goal. The algorithm that 
achieved the performance goal fastest is Conjugate 
Gradient with Powell/Beale Restarts (traincgb). The 
second algorithm that achieved the performance goal 
with second minimum time is Variable Learning Rate 
Backpropagation (traingdx). But as the performance 
goal made further difficult i-e of the order of 1e-15, 
then only algorithm that achieved the goal in 
minimum time was Levenberg-Marquardt (trainlm). 
Therefore whenever you need highest accuracy like 
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in a nuclear power plant, this algorithm, Levenberg- Marquardt, is the most useful. 
 

Table 2: Results for different training algorithms 

Training Method Execution 
time 

Regression 
Coefficient Comments 

BFGS Quasi-Newton (trainbfg) 304.465443 0.9977 Validation stop 
Fletcher-Powell Conjugate Gradient (traincgf) 4.520266 0.9961 Validation stop 
Variable Learning Rate Backprop. (traingdx) 2.33319 0.9861 Validation stop 
One Step Secant (trainoss) 10.050495 0.9978 Performance goal met 
Resilient Backpropagation (trainrp) 6.204507 0.9966 Performance goal met 
Conjugate Gradient with Powell/Beale Restarts 
(traincgb) 

1.832672 0.9987 Performance goal met 

Scaled Conjugate Gradient (trainscg) 3.128176 0.9965 Performance goal met 
Levenberg-Marquardt (trainlm) 16.929745 0.9976 Performance goal met 

 
 
6 Conclusion 

The approach used in this paper was aimed towards 
the problem of spurious reactor trips. Human operators are 
always prone to errors. It is difficult for human operators 
to take accurate decisions by keeping an eye on enormous 
number of parameters and by analyzing a pattern of 
parameters. This approach assists the operators in their 
decision about reactor trip based on the past historical data. 
Nuclear plant operators can benefit from decision support 
system for improvement in their decision-making. This is 
one of the solutions to minimize revenue loss to the plant 
owner. The operator will not be bound to take decision 
suggested by the DSS; he will still be free to take decision 
of his own choice. The DSS will be there only for his 
support. 
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