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1. Introduction: 
               The technique of introducing 

quarantine in standard  and  
epidemic models has received great interest 
in the last two decades (see for example [1], 
[5], [6], [7], and [21]). Over the centuries 
quarantine, which means forced isolation or 
stoppage of interactions with others, 
succeeded to reduce the transmission of 
human and animal diseases. In their recent 
paper Feng and Thieme [5 ] considered an 

 model with a quarantine class and 

showed that the qurantine can lead to 
periodic solutions. They considered in [6 ] a 
more general endemic model that includes 

 models with arbitrary distributed 

periods of infection  including quarantine. 
They proved extinction and persistence 
results. In [12 ], Hethcote et al discussed six 
endemic models with quarantined class. In 

this paper we consider an  model with 

an incidence term more general than those 
used by [3], [10] , [11], [12], [14], and [16]. 
Following [12],we assume that the total host 
population is partioned into susceptable, 
infectious, quarantine and recovered which 

densities denoted respectively by 

 and  The natural birth 

rate denoted by  Assume that infectious 
confers permanent immunity, so that, 

individuals can move from the 

SIS

SIQR

SIR

SIQR

SEIQR

)(),(),( tQtItS ).(tR

.A

I  and Q  

classes to the R  class, where  is the 

number of individuals with permanent 
immunity and 

)

)

(tR

(tR)(tQ )t()(=)( ItStN  .  In this 

paper we assume that the general incidence 

rate term  is differentiable, with ), S(IH

I

H




and 
S

H




 are nonnegative and finite for 

all I  and . More precisely we consider the 
4-dimensional system of differential 
equations, 

S

IH

, SI

d 

,dS

d 

) ,Q

), S

(

2 
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 

=S
'

=I
'

'

A

(
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,)I1IH    

Q I                                  

(1.1) (1.1)) 

,= dRQIR
'

   

where  and d   are positive constants and A

1,,,   and 2  are non-negative 
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constants. The constant A  is the recruiment 
rate of susceptable corresponding to birth and 

immigratrion,    is the average number of 

adequate contact,   is the per capita natural 

mortality rate, 

d

  is the rate constant for 
individuals leaving the infective 

compartment I  for the quarantine 

compartment ,Q  and   are the rates at 

which individuals recover and return to 

susceptable compartment  from 

compartment 

S
I  and  , respectively, and Q

1 and 2  represent the extra disease-related 

death rate constants in classes I  and Q  , 

respectively. The total population size  

satisfies 

)(tN

1 2
' I Q( ) =N t A dN   

(tN

 , so 

that the population size  approached the 

carrying capacity 

)

d

A
 when there is no 

disease. The differential equation for  
implies that the solutions of (1.1) starting in 

the positive orthant  either approach, 

enter, or remain in the subset  

N


4R

.0,S0, RR 0, Q0,I: S),,, QI(






 

d

A
S=D Q RI

 
The model (1.1) is more general 
epidemiological model than those discussed 
in ([11],[14],[16], and [17]). It is known (see 
[11]) that the system (1.1) always has the 

disease-free equilibrium ,0,0,0).(
d

A
=0P  

We define the quarantine reproduction 

number in the form 
)

)

(
D

(






=q

1 d
d
A

R

),

 

where if  the region  contains also 

the endemic equilibrium 

where  

1,

,Q

>q

,

R

, IS(= RP

1

2

( )
= , =

dA I
S I Q

d d d

   
,

 


    


 
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                The aim of this paper is to study 
the dynamic of (1.1) by different techniques 
with a generalized incidence term. We show 
that some of our obtained results may be 
applied for many special forms of 

The organization of this paper is as 

follows. In section 2, we discuss the stability 

properties of the reduced 3-dimensional  

epidemic model. In section 3, we study the 
boundedness, dissipativity, persistence, 
global stability and Hopf bifurcation of 
solutions of the 4-dimensional model (1.1). 
Our technique in this section depends on 
[20]. The paper ends with numerical 
justifications and brief discussion in section 
4. 

).,( SIH

SIQ

 

2. A reduced  epidemic model SIQ

Since the last equation in (1.1) is 
independent of the other equations ( see[10], 
[11], [12] and [13]), we may start by  
discussing the 3-dimensional system,  

,),(= dSSIIHAS
'

   

 

 1= ( , ) ( )
'

I IH I S d      ,I

.)(= 2 QdIQ
'

   

The dynamic of (1.1)  in  is equivalent to 
that of (2.1) in the feasible region  

D

},:),,{(= 3

d

A
QISRQIS           

(2.2) 
which can shown to be closed and positively 
invariant set with respect to (2.1) (see [14]). 

Letting   denotes the boundary of   and 
0  its interior , the system (2.1) always has 
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disease-free equilibrium point 

( ,0,0) .
A

P
d

    

Lemma 2.1. If then there exists a 

unique equilibrium point 

1,qR

,0,0)(=0 d

A
P . 

If then there exists an endemic 

nontrivial equilibrium point 

 in 

1, > qR

,(=  IS ),  QP 0 . 

Proof. The uniqueness of the endemic 
nontrivial equilibrium point can be 
guaranteed by [25]. From the isocline 
equations, it is clear that the coordinates of 

the endemic equilibrium  

satisfy (1.2). Hence since exists, then 

),,(=  QISP
S H  

must be less than ,
d

A
i.e. when  

does not exist and the only equilibrium 

point is 

1,>qR

S

,0,0).(=0 d

A
P Now the local 

stability of can easily deduced by 

inspection of the eigenvalues of the following 

Jacobian matrix at  

 0P

0P

,

)(0

0)()(0,0

0)(0,

=

2
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


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


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




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


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

d

d
d

A
H

d

A
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which has the eigenvalues 

),(0,)(=,= 121 d

A
Hdd    

and ).(= 23   d This completes the 

proof.   □  
Lemma 2.2. The disease-free equilibrium 

point ,0,0)(=0 d

A
P  is globally 

asymptotically stable in   if ,while it  

is an unstable saddle point if . 

1qR

1qR

I)]1

Proof.  Constructing the Liapunov function  

,= IV  

then  
 

 dSIHV ' (),([=    

,I)]()([< d
d

A   1  

since 
d

A
H <  .Thus  

1}.{  q
' RIV  

Consequently, if  qR 1  , then 

0.'V  
Moreover  

0.=iff0= VV '  

Thus the largest compact invariant set in 

  0=:,, IQIS   in the case of 1qR  

is the singleton  p . Consequently by La 

salle ' s invariance principle, it follows that 

the disease-free point ,0,0)(=0 d

A
P  is 

globally asymptotically stable in   ( see [23] 

).Now in the case , 1>qR ,0,0)

d

(=0 d

A
P  is 

an unstable saddle point because as stated in 

Lemma 2.1 the eigenvalues will be =1  

, 0< 0>)
d

A
 (0,H)1

<)

(=2 d 

and (= 23 0  d

the nontrivial equilibri

 i.e. if 1>

m emerges, two roots 
have negative real parts and one is positive, 

so 0P  is an unstable saddle point. □  

Now we may note that the ca

qR  , 

u

se when 

 

analysi

1=qR cannot discussed here by linear 

s. However the above Lyapunov 
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technique covered this case in the case 

 . 1qR

Remark 2.1.  
(1) heorem 2.1 completely determines the 
local dynamics of (2.1) in   depending on 

the reproduction rate . Its epidemiological 

implication is that the infected population ( 
the sum of the latent and infectious 
population) vanish in time so the disease dies 
out. 

qR

(2)The quarantine reproduction number 

)(
=Rq

1



 d
d
A

 represents the 

product of )(0,
d

A
H  , and the average 

residence time 
)(

1

1  d
 in infective 

class I . i.e.  is the average number of 

secondary infectious in a completely 
susceptible population when one infectious 
entries the population in the situation where 
the average infectious period decreased by 
the quarantining of some infectives.  

qR

It was stated in Lemma 2.1 that the system 
(2.1) has a unique endemic nontrivial 

equilibrium . Now we 

discuss the global asymptotic stability of this 
unique endemic equilibrium 

 using the method of 

higher-order generalization of the Bendixon 
criterion (see [16],[17],and [23]).The main 
theorem of the method depends on the use of 
Lozinski Logarithmic norm. For a general 

 matrix  Following [23],we 

consider the Lozinskii measure 

),,(=  QISP

), Q

).(= ijJJ

,  I(= SP

33

  of 

with respect to a 

vector norm 

 1[2] PPJ= PB f
1 P

.  in  , , NR 



2

n
N 




=

 
h

hBI
B

1
lim=


 . The following 

auxiliary result is a basis for most of the 
work of global stability for an autonomous 
system 

).(= YfY
'

 

Lemma 2.3. Assume that 

)( 1I   is simply connected, 

)(
2

I  There exists a compact absorbing set 

 , 

)( 3I The system  has a unique 

equilibrium Y

)(= YfY
'

 in .  

Then Y is globally asymptotically stable in 

  provided that a function  and a 

Lozinski measure 

)(xB

  exists such that 

    0.<,
1

suplim 00
0

dsrsxB
t

t

xt



 

Theorem 2.4.  If  , then the unique 

endemic equilibrium  is 

globally asymptotically stable in . 

1>qR

P ),,(=  QIS
0

Proof . Setting the diagonal matrix  

  ,,1,=,, 







Q

I

Q

I
diagQISp  

then P  is and nonsingular in . Letting  

 to represent the vector field of (2.1). Then 

1C 0
f





Q

Q'







I

I

Q

Q

I

I '''

,0,=p 1 diag

fp

p f , where 

the matrix  is  

        ..=.= xfpxf
x

xp
xp ij

T

ij

fij 










    

(2.3) 

Setting 11 =   dk  and 

  212 = dkk  the Jacobian matrix  

at 

J

 QISp ,,  is 
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Now it is known (see [17] , [19] , [22]) that 
its second additive compound is 
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Moreover 
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where the matrix  is as in (3.1) can be 

written in the matrix form  

p
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Choosing a vector norm 

   ,,max=,,  vuvu  

where  ,,vu  be a vector in . Let 3R   be 

the Lozinki measure with  

      ,,max 2212112111 BBBBB    (2.4) 

where 12B  and 21B  are matrix norm with 

respect to the  vector norm ,and 1L 1  

denotes the Lozinski measure with respect to 

the  norm. Here 1L 1  is given by  
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Since by assumptions 
s

H
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all nonnegative ,then    
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Thus by Theorem 2.1 the unique endemic 

equilibrium  is globally asymptotically 

stable in  .This completes the proof .    □ 

p
0

Now we consider the nontrivial 

equilibrium  of the system 

(2.1) where  
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 Assume that ,  
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H  are positive. The characteristic 

equation at   is given by  ),,  QIS(=P
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where 

,= 20  da  

 

1 1=( ) ( )(1 ) ( ),
S I S

a I H d H I H I H d       
            

(2.10) 
 

)).()))(1()((= 12   






 dHIHIHdHIa

SIS

 
Since by the Routh-Hurwitz criterion (see 

[9]) it is known that  is 

locally asymptotically stable if the roots of 
the characteristic equation (2.9) lie strictly in 
the left half-plane, then we have the 
following theorem. 

),,(=  QISP

Theorem 2.5. Suppose that the conditions  

)(
1

A


HI

I

             

 

1,


S
HI

.< H

)( 2A

be satisfied.Then the equilibrium point 

 is locally asymptotically 

stable. 

),,(=  QISP

Proof.  The proof is similar to the proof of 
Theorem 2.1, so it is omitted.   □ 
  

3. The epidemic model SIQR

    In this section we show that the system 
(1.1) is bounded, positively invariant, and 
dissipative. 
Definition 3.1. ([10], pp. 394) A differential 

equation  is said to be 

dissipative if there is a bounded subset 

)(= XfX
'

B  of 

 such that for an 2R  there is a 

e ,t  which depends on X and ,B  so 

that the ),( Xt  through X  

)  

2R

tim

y 

solution 

,( Xt

X 
  

satisfies B  for .tt   

Theorem 3.1.  Let   be the region defined 
by  

.:),,,(= 4







   d

A
RQISRRQIS

 (3.1) 
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Then 
(i)  is positively invariant, 
(ii) All solutions of the system (1.1) 

are uniformly bounded, 
(iii) System (1.1) is dissipative. 

Proof.  Let 0.>=)(  StS  Since  

= ( , )
'

S A IH I S dS  , (3.2) 

),,(min< SIHSdSA
S




  

where ).,(=),( SIHSSIIH Letting 

)),,(min(= SIHd S   then  

0.<,< SAS
'

                         (3.3) 

Thus  

,teS
A

S 

 


                                    (3.4) 

so that  

).(max S
A

S 



                               

(3.5) 

Thus  

0.0,<,suplim 





S
A

S
t




        (3.6) 

Hence  is uniformly bounded. Since 

 and  

is uniformly bounded, then the solutions of 
(1.1) are uniformly bounded. Dissipativity of 
the system (1.1) follows by Definition 3.1. 
Thus the proof is completed.    □  

)(tS

)(tN  ),()()(=)( tRtQtItS  )(tS

Now, we discuss the existence and 
global stability of the equilibria of (1.1). By 
solving the system of isocline equations  

0,=),( dSSIIHA    

 

0,=)(),( 1 IdSIIH    

2( )I d Q = 0,      (3.7) 

= 0,I Q dR    

thus the possible equilibrium points of (1.1) 

are ,0,0,0),(=
d

A
P  and ).,,,(= RQISP  

The Jacobian matrix due to linearizing (1.1) 

at the equilibrium point ,0,0,0)(=
d

A
P  is  

.

0

0)(0

00)()(0,0

00)(0,

=

2

1
,0,0,0)(=






























d

d

d
d

A
H

d

A
Hd

J
d

A
P










 

The eigenvalues of ,0,0,0)(=
d

A
P  are 

given by  

)()(0,=and0<)(=0,<== 142321   d
d

A
Hdd

 (3.8) 
The above discussion leads to the following 
results.  
Theorem 3.2.  

(i) If 1qR , then the disease-free 

equilibrium point ,0,0,0)(=
d

A
P  is locally 

asymptotically stable. 

(ii) If , then the equilibrium point 1>qR

,0,0,0)
d

A
(=P  is a hyperbolic saddle and is 

repelling in the both directions of Q  and R  . 

In particular, the dimensions of the stable 

manifold  and unstable manifold  are 
given by  

W W

3,=,0,0,0))(=(1,=,0,0,0))(=(
d

A
PDimW

d

A
PDimW 



 (3.9) 
respectively. 
Proof. The proof of(i) follows by Lemma 2.1 
and the Routh-Hurwitz theorem [ 9], so it is 
omitted. The proof of (ii) follows directly 
from inspection of the eigenvalues of the 

Jacobian matrix at ,0,0,0)(=
d

A
P  and 



Journal of American Science                                                                                                          2010;6(11)   

  

http://www.americanscience.org            editor@americanscience.org 777

examples from Freedman and Mathsen [8] .  
□ 
   Now to give sufficient conditions for 
existence of a positive interior equilibrium 

),,,,(= RQISP  we discuss the uniform 

persistent of (1.1). To show a uniform 
persistence in the set  

,0,>0,>0,>0,>:),,,(=






 

d

A
RQISRQISRQISRSIQR

                                                                            
(3.10) 
we assume the following hypotheses for 
system (1.1). 

( ) All dynamics are trivial on  (the 

boundary of the set ). 

3A  SIQRR

SIQRR

( ) All invariant sets (equilibrium points) 

are hyperbolic and isolated. 
4A

( ) No invariant sets on  are 

asymptotic stable. 

5A 
SIQRR

( ) If an equilibrium point exists in the 

interior of any 3-dimensional subspace of 

 it must be globally asymptotically 

stable with respect to orbits initiating in that 
interior. 

6A


SIQRR

( ) If 7A M  is an invariant set on  and 

 and it is strong stable manifold, 

then W  

 SIQRR

)

( M

(W  M

.=)  SIQRR

( ) All invariant sets are cyclic. 8A

Here, we drive criteria for the global 

stability hypothesis (  to be valid. )7A

Now, we discuss the global stability of 

,0,0)(=
d

A
P . In  consider the Liapunov 

function  

4
R

.= IV                                            (3.11) 
Thus  

 

 IdSIH
dt

dV
)(),(= 1   

 

1
1

( , )
= ( ) 1 .

( )

H I S
d I

d

  
  

 
       

 0.  
Now we give the following result. 
Theorem 3.3.  If  

1,
)(

),(

1


 


d

SIH
                           (3.13) 

then the disease-free equilibrium point 

,0,0)(=
d

A
P  is globally asymptotically 

stable with respect to solution trajectories 

initiating from int  ( the interior of the set 

 ). 


SR


SR

Proof. The proof is similar to the proof of 
Theorem 3.1 in ([19], p. 197) so it is omitted.     
□  

Now, to discuss the global stability 

of the point = ( , , )P S I Q ,  choose the 

Liapunov function  

Q

Q
QQQIIkSSkV ln)(

2

1
)(

2

1
= 2

2
2

1 

  
                                                                       
(3.14) 

where  1,2.=, iRki


The derivative of (3.14) along the 

solutions curve (2.1) in  is given by ,  
SIQR

 

 dSSIIHASSk
dt

dV
 ),(()(= 1  

 

 2 1( , ) ( )k IH I S d                

(3.15) (3.15) 
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 ,)(1 2 QdI
Q

Q  







  

where  

= ( , ) ,A I H I S d S                                 

(3.16) (3.16) 

),(=),( 1  dSIH  

.= 2  d
Q

I
 

Hence  
 

1 1= ( ) ( , ) ( ,
dV

k d S S k I H I S IH I S
dt

 )    
                                        
(3.17) 

 

   .),(),()(2 QIQISIHISIIHIIk  
 

Let  such that 
















3

2

1

=

v

v

v

X ,

)(=

)(=

)(=

3

2

1

QQv

IIv

SSv





 and 

set  

,= 111 dka   

 

12 21 1 2

( , ) ( , ) ( , ) ( , )
= =

( ) ( )

IH I S IH I S IH I S IH I S
a a k k

I I S S

        
 

                                               
(3.18) 

 

   
.

)(
=0,==,

)(

),(),(
= 333113222

QQ

QIQI
aaa

II

SIHISIIH
ka





 

                                               
(3.19) 

Thus 

2 2
11 1 22 2 33 3=

dV
a v a v a v

dt
  2  (3.19) 

 

3223211231132112
2
111 2

1

2

1

2

1

2

1
= vvavvavvavvava 

 
 

,
2

1

2

1 2
33331133223

2
222 vavvavvava   

where  with 

 But 

jiij aa =

1,2,3.=,0,== 2313 jiaa

XAXXAXAXX
dt

dV TT ,===  

(quadratic form), where  is an  real 

symmetric matrix such that 

A 33

)(A
2

1
= TAA  

and given by  

.

2

1

2

1
2

1

2

1
2

1

2

1

=

332313

232212

131211























aaa

aaa

aaa

A                 (3.20) 

Let  are such that 1,2,3=,, jiaij

(i)  ),,(1 RRRRCaij
 

(ii) ijxx alim   exists as a finite 

number, where  is the equilibrium point. x

(iii)  are bounded for all 

 

ija

1,2,3.=, ji

The characteristic roots of the matrix 

 are given by  A

3 3( , ) = det( )A A I                    (3.21) 

0,== 32
2

1
3 mmm    

where  
 

),(=trace= 3322111 aaaAm   
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,

2

1
2

1

det

2

1
2

1

det

2

1
2

1

det=

3323

2322

3313

1311

2212

1211

2

aa

aa

aa

aa

aa

aa
m 

 

.det=3 Am   

But since  , then  0== 2313 aa

1 11 22 33= ( ),m a a a               (3.22) 

,
4

1
)(= 2

123322112 aaaam   

)
4

1
(= 2211

2
12333 aaaam   

Hence by the Routh-Hurwitz criteria and 
Lemma 6.1 of ([15], pp. 177), it follows that 

 is negative definite if  A

1 3 1 2< 0, < 0, and > .m m m m m3          (3.23) 

Thus we have the following theorem. 
Theorem 3.5.  Suppose that the two 
conditions, 

(i)            

(ii)

1,2,3,=0,< iaii

0,<
4

1 2
122211 aaa   

hold, then the equilibrium point 
 SIQRQISP ),,(=  is globally 

asymptotically stable with respect to solution 

trajectories initiating from   int 
SIQR

Proof.  The proof follows the lines of those 
of Nani et al[20, Lemma 6.1] and Frobenius 
Theorem .   □ 
 The following Lemma due to Butler-
McGehee (cf. [20]) be needed for our later 
results. 

Lemma 3.6. Let P  be an isolated hyperbolic 

equilibrium in the omega limit set   of 

an orbit 

)(X
).(X  Then either  )(X P=

)(X

 or 

there exist points  in  with 

 and  . 

 QQ ,

MQ 



)(P)(PMQ  

  Now, we discuss persistence, uniformly 
persistence and give sufficient conditions for 
the existence of a positive interior 

equilibrium point ).,,,(= RQISP  

Theorem 3.7. Assume that, 

(i) ,0,0,0)(=
d

A
P  is a hyperbolic saddle 

point and is repelling in both Q  and R  

direction (see Theorem 3.4). 
(ii) System (1.1) is dissipative and solutions 

initiating in  are eventually 

uniformly bounded. 


SIQRintR

(iii) The equilibrium points ,0,0)(=
d

A
P  

and ),,(= QISP  are globally 

asymptotically stable.Then the system (1.1) 
is uniformly persistence. 
Proof. The proof depends on Lemma 3.6. Let 

 We have shown in Theorem 3.2 that 

.1}=:),,,{(= 44
 RRQISRRQIS SIQR

  is 
positively invariant, and any solution of 
system (1.1) initiating at a point in  is 

eventually uniformly bounded. However 

4R

,0,0)(=
d

A
P  is the only compact 

invariant set on  Let .4
R

),Q,,(== RISPM  be such that 

 The proof will be completed by 

showing that no points  belongs to  

.4
 RintM

).(M

4
RQi

  Suppose the contrary that P  

).(M  Since  is a hyperbolic, P P  

).(M  By Lemma 3.6, there exists a point 

 )\)((0 PWQ  

).(0 MQ 

P  such that 

 But since 

  ,=)\4()(  RPW 
  P  this contradicts 

the positive invariance property of  Thus .
P (M ).  We also show that 
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).(,0),,(=1 MQISP   If 

),(,0),,(=1 MQISP   then there exists a 

point  such that 

 But  and 

 )\)(( 111 PPWQ  

).(M )( 1
 PW1Q  =)( 4

R

,0),,(=1 QISP

P

 is globally asymptotically 

stable with respect to  This implies that 

the closure of the orbit  through  

either contains  or be unbounded. This is a 

contradiction. Hence 

.
SIQR

)( 1
Q 

1Q



).(M

  .=) 

,=

.=) 

 
4R .=)(

,0)

\ P

)4


\ R

,,(=1 QISP

P

()( 4
 RPW 

 

1P

()( 1
  IntRPW

()( 44
1 

  RPW

 Thus we see that 

if  is unstable, then  

 Also, we deduce 

that if  is unstable, then  

  and   

 

Now, we show that  M  Let 

E   and  Then the closure 

of the orbit through 

4
R  ).(ME

E  , )(E  either 

contains  and  or be unbounded, and the 

uniformly persistence result follows since 

 must be in  This completes the 

proof.   □  

P 1

)(M

P

.4
intR

.

Now, we discuss Hopf bifurcation 
for the system of equations (1.1) with 

bifurcation parameter   The system (1.1) 
can be recast into the form  

),

R =4

,(= XFX
'










X

 

where  and 










R

Q

I

S

  is the 

bifurcation parameter. ),( XF  is a 

 function on an open set in 

 Let 

5)( rCr

.14 RR 









),,,(=,0,0,0),(== RQISP
d

A
PB   be 

the set of equilibrium points of (1.1) such 

that  for some  on a 

sufficiently large open set G  containing each 

member of  The linearized problem 

corresponding to (1.1) about any 

0,=)( BF

.B

1R

  is give 
by  

.4R,))(( yBFJ = yy                        

(3.24) 
Here, we are interested in studying how the 

orbit structure near  changes as B   is 

varied. 
Theorem 3.8 . If  

),1( >,0)(   d
d

A
H  

then the Hopf bifurcation can not occur at 

,0,0,0).(=
d

A
P  

Examples. 
1- Consider the special case of incidence rate 

 considered by [18], and [19] for 

,with the choices 

qPSI
1=q 0.8,=  0.3,=  

0.00027473== dA  and 0.3,= then a 

simple calculations , leads to the  is very 

close to 0.3 i.e. the condition  be 

satisfied .Moreover in this case the condition 

 be satisfied .This because in this case 

 where  may only equal one 

in two uncosiderable cases, 

qR

1qR

o

)( 1A

=s IIH ,P =q 1

p = I or  

In the special case of incidence rate 

= 1

IS

.

  

considered  by [ 23 ], the conditions of 

Theorem 3.10 are not satisfied in this special 

case of the incidence rate. This is consistent 

with the conclusion of [12]. 
 
4. Discussion 
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                In this paper, we discussed a 

generalized  epidemic system with 

vertical transmission for the dynamics of an 
infectious disease. The generalized incidence 

term of the form 

SIQR

 ),( SIIH is of nonlinear 

form and the immunity is assumed to be 
permanent. It has endemic equilibrium that 
are asymptotically stable so that no periodic 
solutions arise by Hopf bifurcation. We 
established local asymptotic stability of the 

disease free-equilibrium ,0,0)(=
d

A
P  and 

,0,0,0)(=
d

A
P  for the systems (2.1) and 

(1.1), respectively. Our results are consistent 
with those obtained by Korobeinikov et al 

[13], when conditions  and  of 

Theorem 2.1 be satisfied. We have shown 

that if the condition  of Theorem 2.1 is 

satisfied, then the disease free-equilibrium 

point 

)( 1A

)1

)( 2A

(A

,0,0)
d

A

( 2A

,,  ES

(=P  is locally asymptotically 

stable in the interior of the feasible region 
and the disease always dies out. The main 
theorem of the method depends on Lozinski 
Logarithmic norm. We have shown that if the 

two conditions  and  of Theorem 

2.2 hold, then a unique endemic equilibrium 

point  exists and is locally 

asymptotically stable in the interior of the 
feasible region. Moreover, once the disease 
appears, it eventually persists  at the unique 
endemic equilibrium level. The local stability 

of 

)

)I

)( 3A

(=P

= ( ,0)
A



,,  IES

,0,0)
A

)

, = (P P
d d

,0,0 , and 

are obtained using the 

Routh-Hurwitz criteria, which has been 
widely used in the literature ( [2] and [9]). 

The global stability of 

(=P

,0,0)(=P d

A
 and 

 in Theorem 3.4 and 

Theorem 3.5 are established using  Liapunov 
functions a similar approach to those in  Li 
([14], [15]) and Freedman [20]. We employ 
the mathematical tools of differential 
analysis, persistence theory and a technique 
similar to that used by Nani and Freedman 
[20]. We discuss uniform persistent and Hopf 
bifurcation of system (1.1) at 

),,(=  IESP

,0,0,0)(=
d

A
P  .We give some numerical 

examples that ensure our results. Our 
obtained results improve and partially 
generalize those obtained in [3], [4], [11] [13] 
and [24]. 
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