The Assessment Of Mycotic Settlement Of Freshwater Fishes In Egypt

Refai, M.K.1, Laila, A. Mohamed2, Amany, M. Kenawy2, and Shimaa, El-S.M.A*2

1 Microbiology Dept., Faculty of Vet.Medicine, Cairo University, Giza, Egypt.
2 Hydrobiology Dept., National Research Center. Dokki, Giza, Egypt.
shimaakhalifa2003@yahoo.com

Abstract: This study was carried out on 360 freshwater fishes (240 Oreochromis species and 120 Clarias gariepinus). They were collected from different governorates and during different seasons. Naturally infected fishes showed clinical abnormalities such as skin darkening, exophthalmia, corneal opacity, abdominal distention, ulceration of the skin and cotton wool like growths on various parts of the body. Fishes were then subjected to post mortem examination which revealed many abnormalities. Mycological examination revealed the isolation of 2081 fungal isolates from 150 diseased and 210 apparently healthy fish samples (1658 mould and 423 yeast isolates), of which 1334 were isolated from Oreochromis species and 747 isolates from Clarias gariepinus. Isolated moulds belonged to the following genera: Saprolegnia (4.2%), Aspergillus (43.0%), Fusarium (14.1%), Mucor (14), Penicillium (17.2), Rhizopus (4.8%), Scopulariopsis (1.2%), Paecilomyces (1%) and Curvularia (0.4%). Yeasts isolated also from both fish species had the following incidence: Candida albicans (35.9 %), other Candida species (19.1%), Rhodotorula species (31.4%) and Torulopsis species (13.5%). Experimental infection with the most predominant fungi (Aspergillus flavus, Fusarium species and Candida albicans) was conducted to evaluate the pathogenicity of these isolates. Clinical pictures of experimentally infected fish were similar to those of natural infection. Inoculated fungi were re-isolated from different organs. Results were confirmed with histopathological examination, which revealed the presence of fungal hyphae and spores in different organs.

Keywords: Mycotic infection, Oreochromis species, Clarias gariepinus, Moulds, Yeasts, Aspergillus, Fusarium, Candida, Penicillium.

1. Introduction

Many of the fungi that affect fishes are considered opportunists, attacking the fishes when they are stressed or immunocompromised because of unfavorable environmental conditions, or secondary to bacterial or viral infections, or when they have lost their mucus protection because of trauma or excessive handling (Roberts 1989 and Quiniou et al., 1998). Mycotic infections of fishes by Oomycetes are wide spread in freshwater and represent the most important fungal group affecting wild and cultured fishes. The Saprolegniaceae, in particular members of the genus Saprolegnia, are responsible for significant infections involving both living, dead fishes and eggs. Oomycetes are classical saprophytic opportunities, multiplying on fishes that are physically injured, stressed or infected (Pickering and Willoughby, 1982). Members of this group are generally considered agents of secondary infection arising from conditions such as bacterial infections, poor husbandry, and infestation by parasite and social interaction. However, there are several reports of Oomycetes as primary infectious agents of fishes (Pickering and Christie, 1980) and their eggs (Walser and Phelps, 1993). Moreover, there are other fungi that have been implicated in fish diseases. Some of the genera involved include Aspergillus (Salem et al., 1989b), Fusarium (Bisht et al., 2000), Ichthyophonus (Faisal et al., 1985), Branchiomycetes (Easa 1984), Phoma (Hatai et al., 1986), Paecilomyces (Lightner et al., 1988), Exophialia (Langdon and MacDonald 1987), Phialophora (Ellis et al., 1983), Rhizomucor (Wolf and Smith 1999) and Candida (Neish and Hughes 1980). Most of these are multiple case reports or single, and causing systemic disease with high mortality rates in fishes. The objective of this study was to determine the types of fungal pathogens affecting freshwater fishes specially those causing high mortality rates, elucidation of the incidence and distribution of such pathogens in Oreochromis species and Clarias gariepinus, studying the seasonal variations enhancing fungal diseases of fishes and determination of the pathogenicity of the most prevalent isolated fungi.
2. Material and Methods

A total number of 360 fish were observed for their behavior, external lesions prior to autopsy. Then they were killed and examined. The examination included external changes as well as examination of internal organs. Wet mount preparation of fish samples were commonly made in 10% KOH. A simple stain such as lactophenol cotton blue was used. The preparation was examined microscopically after about 30 minutes for fungal elements. Mycological examination was done according to (1993 Noga). Identification of moulds was carried out according to Refai (1987). Identification of yeasts: Plates were examined microscopically for the presence of chlamydospores, arthrospores and blastospores (Refai, 1987) and the scheme of identification of yeasts given by Terrence (1971). Urease test (Cruickshank et al., 1975). Suspected Candida species were scratched onto rice or corn meal agar for pseudohyphae and chlamydosposeres production (Larone, 1987) and a confirmatory identification was carried out by germ tube test (Martin, 1979).

Histopathological examination:

Tissue samples were prepared according to Roberts 1989. and stained by periodic acid Schiff’s (PAS) and GMS (Sheehan and Harpachak 1980).

Experimental infection:

A total of 120 Oreochromis species with 30-40 g average body weight were used. They were divided into four equal groups (each one contained 30 fish). Each group were subdivided into three subgroups, each contained 10 fish.

Preparation of spores suspension for experimental infection: Inocula were prepared by spreading 5 ml of sterile phosphate buffer saline over the plates containing 7-10 day old pure cultures of Aspergillus flavus and Fusarium sp. The spores were harvested by gentle washing of the surface of the colonies with sterile loop, then transferred aseptically to sterile flasks. Two drops of tween 80 were added to avoid clumping of spores in case of Aspergillus flavus group. Spores were counted by aid of haemocytometer and suspension was diluted to reach 9X 10⁵ spores/ml for both Aspergillus flavus and Fusarium sp.

Preparation of yeast suspension for experimental infection: A loopfull of one day old pure yeast culture of Candida albicans was added to test tube containing 5 ml of sterile phosphate buffer saline and mixed gently to reach equal distribution. Spores were counted by using haemocytometer then suspension was adjusted to reach 2x10⁷ Candida spores per ml.

3. Results and Discussion

Mycological examination revealed the isolation of 2081 fungal isolates from 150 diseased and 210 apparently healthy fish samples, of which 1334 were isolated from Oreochromis species and 747 isolates from Clarias gariepinus. identification of fungi into yeasts and moulds revealed that the percentage of moulds was slightly higher in Oreochromis species (80.5%) in comparison to that in Clarias gariepinus (78.2 %). On other hand, the rate of yeast isolates per fish was slightly higher in Clarias gariepinus. Isolated moulds belonged to the following genera: Saprolegnia, Aspergillus, Fusarium, Mucor, Penicillium, Rhizopus, Scopulariopsis, Paecilomyces and Curvularia. The same fungal isolates were reported by Abdel Alim (1992) and khalil (1993).

The Incidence of moulds in diseased and apparently healthy fishes were recorded in (Fig.1&2), also the incidences of isolated moulds from different organs of Oreochromis species (Fig.3) and Clarias gariepinus (Fig.4) were detected. Seasonal incidences were seen in (Fig. 5). As these isolates were recovered from apparently healthy and clinically diseased Oreochromis species and Clarias gariepinus. This was expected, as almost all these fungi were categorized by Shaheen (1986) as normal mycoflora. This does not mean that they cannot produce disease. They can better be considered as opportunistic fungi (Refai, 1987) as many of them possess virulence factors, which enable them to cause diseases (Refai et al., 2004), particulary under favourable predisposing condition. Regarding to seasonal incidence Saprolegnia species were isolated with high incidence in Winter, followed by early Spring and late Autumn. This result agrees with Naguib (1994)), who stated that the seasonal variations play an important role in spreading of the Saprolegnia infection among freshwater fishes especially during late Autumn, Winter and early Spring, where the water temperature was low.

The Incidence of moulds in diseased and apparently healthy fishes were recorded in (Fig.1&2), also the incidences of isolated moulds from different organs of Oreochromis species (Fig.3) and Clarias gariepinus (Fig.4) were detected. Seasonal incidences were seen in (Fig. 5). As these isolates were recovered from apparently healthy and clinically diseased Oreochromis species and Clarias gariepinus. This was expected, as almost all these fungi were categorized by Shaheen (1986) as normal mycoflora.
This does not mean that they cannot produce disease. They can better be considered as opportunistic fungi (Refai, 1987) as many of them possess virulence factors, which enable them to cause diseases (Refai et al., 2004), particularly under favourable predisposing condition. Regarding to seasonal incidence *Saprolegnia* species were isolated with high incidence in Winter, followed by early Spring and late Autumn. This result agrees with Naguib (1994), who stated that the seasonal variations play an important role in spreading of the *Saprolegnia* infection among freshwater fishes especially during late Autumn, Winter and early Spring, where the water temperature was low.

Clinical findings of *Oreochromis* species inoculated with *Aspergillus flavus*, *Fusarium* species and *Candida albicans* revealed that exophthalmia (Photo.21), skin darkening (Photo.22), cotton wool-like growth on various parts of the body (Photo.23&24), moderate abdominal distention (Photo.25) and corneal opacity and haemorrhages allow the body surface (Photo.26). These results are supported by Marzouk et al.(2003).

Postmortem finding revealed congestion and ulceration of gills (Photo.27), haemorrhagic abdominal fluids, necrotic foci within liver and distention of gall bladder (Photo.28), multiple nodules within spleen (Photo.29) and severe intestinal congestion (Photo.30) were also observed. On the other hand, no clinical or postmortem changes were detected on fish groups maintained at 18°C. These findings are in agreement with those of Refai et al. (1987).

It can be concluded from the results obtained in the present work that, though most fungi isolated from fishes are considered by several authors as normal mycoflora, yet we could prove in the present study that many fungi can cause natural infections. This was confirmed by histopathological reactions characteristic of fungal infection in naturally infected fishes, and the presence of fungal elements in the lesions. This was substantiated also by experimental infection of fish that induced similar findings as the natural infection, i.e. a clear application of Koch's postulate. This conclusion should direct our attention to the possible role of fungi in affecting fishes industry.

The pathological changes and the fungal elements in tissue sections in naturally infected fishes of various organs are described under each of the following photos (31-39),, stained by either PAS or GMS stains.

Corresponding Author:
Shimaa, Khalifa
Dept. of Hydrobiology, veterinary research division, National Research Center.Dokki, Giza,Egypt. Tel.: +202-3371728- Fax: +202-3370931
E-mail: shimaakhalifa2003@yahoo.com

<table>
<thead>
<tr>
<th>Table (3): Type, average body weight of fish, spores concentration per ml, dose, route of inoculation and temperature.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
</tr>
<tr>
<td>Tilapia sp.</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>Tilapia sp.</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>Tilapia sp.</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>Tilapia sp.</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

http://www.americanscience.org 597 editor@americanscience.org
Fig. (1): Incidence of moulds in diseased and apparently healthy Oreochromis spp.

Fig. (2): Incidence of moulds in diseased and apparently healthy *Clarias gariepinus*

Fig. (3): Incidence of moulds isolated from different organs of *Oreochromis* species

Fig. (5): Incidence of moulds isolated from different organs of *Clarias gariepinus*

Fig. (7): Seasonal incidence of isolated moulds from *Clarias gariepinus*

Photo. (31): Spleen section stained with PAS (X400) showing a granuloma formed of epithelioid cells and macrophages surrounded with fibroblasts and fibrous connective tissue capsule. Fungal hyphae appear within the granuloma. Photo. (32): Spleen section stained with PAS (X400) showing granuloma consists of epithelioid cells, macrophages and surrounded with connective tissue capsule. Large number of fungal spores appear within and surrounding granuloma. Photo. (33): Liver section showing fungal hyphae between the hepatocytes stained with PAS (X200). Photo. (34): Liver section stained by GMS (X400) showing granuloma consists of aggregation of epithelioid cells, macrophages and fibrous connective tissue capsule. Fungal hyphae and spores appear within granuloma. Photo. (35): Liver section stained by GMS (X 1000) showing fungal hyphae and spores between the hepatic tissue. Photo. (36): Spleen section stained by GMS (X 400) showing focal aggregation of spores surrounded with proliferating fibroblasts and fibrous connective tissue in between. Photo. (37): Kidney section stained by GMS (X 400) showing fungal hyphae investing necrosed areas of epithelial lining the secondary lamellae. Photo. (38): Gills section stained by GMS (X 400) showing yeast cells investing the interstitial tissues.

5. References

