Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

W.K. Zahra, F.A. Abd El-Salam, A.A. El-Sabbagh and Z.A. Zaki*

1Department of Engineering Mathematics and Physics, Faculty of Engineering, Tanta University, Tanta, Egypt
2Department of Engineering Mathematics and Physics, Faculty of Engineering, Benha University, Shoubra, Cairo, Egypt.

Zahmed_2@yahoo.com*

Abstract: Third and fourth order convergent methods based on cubic nonpolynomial spline function at midknotes are presented for the numerical solution of a second order two-point boundary value problem with Neumann conditions. Using this spline function a few consistency relations are derived for computing approximations to the solution of the problem. Convergence analysis of these methods is discussed two numerical examples are given to illustrate practical usefulness of the new methods. [Journal of American Science. 2010;6(12):297-302]. (ISSN: 1545-1003).

Keywords: Cubic nonpolynomial spline; two-point boundary value problem; Neumann boundary conditions.

1. Introduction:

In approximation theory spline functions occupy an important position having a number of applications, especially in the numerical solution of boundary-value problems. We shall consider a numerical solution of the following linear second order two-point boundary value problem, see [5].

\[y'' + f(x)y = g(x), \quad x \in [a, b] \] (1.1)

Subject to Neumann boundary conditions:

\[y'(a) - A_1 = y'(b) - A_2 = 0 \] (1.2)

Where \(A_i, i = 1, 2 \) are finite real constants. The functions \(f(x) \) and \(g(x) \) are continuous on the interval \([a,b]\). The analytical solution of (1.1) subjected to (1.2) cannot be obtained for arbitrary choices of \(f(x) \) and \(g(x) \).

The numerical analysis literature contains little on the solution of second order two-point boundary value problem (1.1) subjected to Neumann boundary conditions (1.2), while the linear second order two-point boundary value problem (1.1) subjected to Dirichlet boundary conditions solved by different types of spline functions, see [1, 7, 8, 9].

Ramadan et al. [5] solved the problem (1.1) subjected to (1.2) using quadratic polynomial spline, cubic polynomial spline and quadratic nonpolynomial spline at midknotes.

In this paper, we develop cubic nonpolynomial spline at midknotes to get smooth approximations for the solution of the problem (1.1) subjected to Neumann boundary conditions (1.2).

2. Derivation of the method:

We introduce a finite set of grid points \(x_i \) by dividing the interval \([a, b]\) into \(n \) equal parts.

\[x_i = a + ih, \quad i = 0, 1, \ldots, n \]

\[x_0 = a, \quad x_n = b \]

\[h = \frac{b-a}{n} \] (2.1)

Let \(y(x) \) be the exact solution of the system (1.1) and (1.2) and \(S_i \) be an approximation to \(y_i = y(x_i) \) obtained by the spline function \(Q_i(x) \) passing through the points \((x_i, s_i)\) and \((x_{i+1}, s_{i+1})\).

Each nonpolynomial spline segment \(Q_i(x) \) has the form.

\[Q_i(x) = a_i \sin(k(x-x_i)) + b_i \cos(k(x-x_i)) + c_i (x-x_i) + d_i, \quad i = 0, 1, \ldots, n-1 \] (2.2)

Where \(a_i, b_i, c_i \) and \(d_i \) are constants and \(k \) is the frequency of the trigonometric functions which will be used to raise the accuracy of the method and equation (2.2) reduces to cubic polynomial spline function in \([a,b]\) when \(k \to 0 \). Choosing the spline function in this form will enable us to generalize other existing methods by arbitrary choices of the parameters \(\alpha \) and \(\beta \) which will be defined later at the end of this section. Thus, our cubic nonpolynomial spline is now defined by the relations:

\[(i) S(x) = Q_i(x), x \in [x_i, x_{i+1}], i = 0, 1, \ldots, n-1 \]

\[(ii) S(x) \in C^\infty [a, b] \] (2.3)
The four coefficients in (2.2) need to be obtained in terms of
\[S_{i+\frac{1}{2}}, D_i, M_{i+\frac{1}{2}}, T_i \text{ and } T_{i+1}. \]

Where
\[(i) \quad Q_i(x_{i+\frac{1}{2}}) = S_i, \quad (ii) \quad Q_i^{(1)}(x_{i+\frac{1}{2}}) = D_i, \]
\[(iii) \quad Q_i^{(2)}(x_{i+\frac{1}{2}}) = M_i, \quad (iv) \quad Q_i^{(3)}(x_{i+\frac{1}{2}}) = T_i. \]

We obtain via a straightforward calculation
\[a_i = \frac{-1}{2h} [T_{i+1} + T_i], \quad b_i = \frac{\tan \theta'}{2h} [T_{i+1} + T_i] - \frac{\sec \theta'}{k^2} M_i, \]
\[C_i = D_i + \frac{1}{2h} [T_{i+1} + T_i], \quad d_i = S_i + \frac{1}{2h} M_{i+\frac{1}{2}} - \frac{h}{4k^2} M_i + \frac{1}{4k} T_{i+1} + T_i. \]

Where \(\theta = kh \) and \(i = 0, 1, 2 \ldots n-1 \)

Now using the continuity conditions (ii) and (2.3), that is the continuity of cubic nonpolynomial spline \(S(x) \) and its first and second derivatives at the point \((x_n, s) \), where the two cubics \(Q_i(x) \) and \(Q_i(x) \) join, we can have
\[Q_{i+\frac{1}{2}}^{(m)}(x) = Q_i^{(m)}(x_i), \quad m = 0, 1, 2 \]

Using Eqs. (2.2), (2.4), (2.5) and (2.6) yield the relations:
\[\frac{h}{2} [D_i + D_{i+1}] = \frac{1}{k^2} M_{i+\frac{1}{2}} \left[1 - \sec \theta' \right] M_{i+\frac{1}{2}} \left[\cos \theta \sec \theta' \right], \]
\[\tan \theta' \frac{h}{2k} \left[T_{i+1} + 2T_i + T_{i+1} \right] = \frac{1}{k^2} \left[1 - \sec \theta' \right] M_{i+\frac{1}{2}} \left[\cos \theta \sec \theta' \right]. \]

And
\[\tan \theta' \frac{2k^2}{h} \left[T_{i+1} + 2T_i + T_{i+1} \right] = \frac{\sec \theta' \cos \theta \sec \theta'}{k^2} M_{i+\frac{1}{2}} \left[\cos \theta \sec \theta' \right]. \]

From Eqs. (2.7) – (2.9) we get the following relation:
\[S_{i+\frac{1}{2}} - 2S_i + S_{i-\frac{1}{2}} = h \left[\alpha M_{i+\frac{1}{2}} + \beta M_{i-\frac{1}{2}} + \alpha M_{i+\frac{1}{2}} \right] \]
\[i = 2, 3, \ldots, n-1. \]

Where
\[\theta = -2\sin \theta', \quad \alpha = \frac{2\theta \sin^2 \theta'}{\sin \theta'} \quad \text{and} \quad \beta = \frac{2\theta \sin^2 \theta'}{\sin \theta'} \]

And
\[M_i = -f_i S_i + g_i \text{ with } f_i = f(x_i), \quad g_i = g(x_i) \]

The relation (2.10) gives \((n-2)\) linear algebraic equations in the \((n)\) unknowns \(S_{i+\frac{1}{2}} \), \(i = 0, 1, 2, \ldots, n-1 \), so we need two more equations, one at each end of the range of integration for direct computation of \(S_{i+\frac{1}{2}} \). These two equations are deduced by Taylor series and the method of undetermined coefficients. These equations are
\[-hS_{0+\frac{1}{2}} - S_{\frac{1}{2}} + h^2 \left[w_{0+\frac{1}{2}} M_{\frac{1}{2}} + w_{\frac{1}{2}} M_{0+\frac{1}{2}} + w_{\frac{1}{2}} M_{\frac{1}{2}} + w_{1+\frac{1}{2}} M_{\frac{1}{2}} \right] \]
\[i = 1 \]
\[(2.11) \]

And
\[S_{n-\frac{1}{2}} - S_n + h S_{n+\frac{1}{2}} = h^2 \left[w_{n-\frac{1}{2}} M_{\frac{1}{2}} + w_{n-\frac{1}{2}} M_{n-\frac{1}{2}} + w_{n-\frac{1}{2}} M_{\frac{1}{2}} + w_{n+\frac{1}{2}} M_{\frac{1}{2}} \right] \]
\[i = n \]
\[(2.12) \]

Where \(w_i \)'s will be determined later to get the required order of accuracy.

The local truncation errors \(t_i, i = 1, 2, \ldots, n \) associated with the scheme (2.10) – (2.12) can be obtained as follows, we rewrite the scheme(2.10) – (2.12) in the form
\[-h y_i^{(0)} - y_{i-\frac{1}{2}} + y_{i+\frac{1}{2}} = h^2 \left[w_i y_{i-\frac{1}{2}}^{(1)} + w_i y_{i-\frac{1}{2}}^{(2)} + w_i y_{i+\frac{1}{2}}^{(1)} + w_i y_{i+\frac{1}{2}}^{(2)} \right] + t_i, \quad i = 1 \]
\[(2.13) \]
\[y_{i-\frac{1}{2}} - 2y_{i-\frac{1}{2}} + y_{i+\frac{1}{2}} = h^2 \left[w_i y_{i-\frac{1}{2}}^{(3)} + w_i y_{i-\frac{1}{2}}^{(4)} + w_i y_{i+\frac{1}{2}}^{(3)} + w_i y_{i+\frac{1}{2}}^{(4)} \right] + t_i, \quad i = 2, 3, \ldots, n-1 \]
\[(2.14) \]

And
\[y_{i-\frac{1}{2}} - 2y_{i-\frac{1}{2}} + y_{i+\frac{1}{2}} = h^2 \left[w_i y_{i-\frac{1}{2}}^{(5)} + w_i y_{i-\frac{1}{2}}^{(6)} + w_i y_{i+\frac{1}{2}}^{(5)} + w_i y_{i+\frac{1}{2}}^{(6)} \right] + t_i, \quad i = 1 \]
\[(2.15) \]

The terms \(y_{i-\frac{1}{2}} \) and \(y_{i+\frac{1}{2}} \) in Eq. (2.14) are expanded around the point \(x_i \) using Taylor series and the expressions for \(t_i, i = 2, \ldots, n-1 \) can be obtained. Also, expressions for \(t_i, i = 1, n \) are obtained by expanding Eqs. (2.13) and (2.15) around

http://www.americanscience.org
298
editor@americanscience.org
the point \(x_0 \) and \(x_n \), respectively, using Taylor series and the expressions for \(t_i; i = 1, n \) can be obtained as

\[
\begin{bmatrix}
1 \cdot (6w_0 + w_1 + w_2) \\
80 \cdot (w_2 + 9w_1 + 25w_1 + w_0) \\
78 \cdot (w_0 + 83w_0 + 25w_1 + 231w_1 + 680w_0)
\end{bmatrix} h^{y(3)}
= \begin{bmatrix}
\frac{26}{48} (w_0 + 3w_1 + 5w_1 + 3w_1) \\
\frac{380}{8} (w_2 + 25w_1 + 125w_1 + 33w_1) \\
\frac{240}{384} (w_0 + 83w_1 + 25w_1 + 231w_1 + 680w_0)
\end{bmatrix} h^{y(3)}
\]

Then the local truncation errors given by equation (2.16) are

\[
\begin{align*}
& 2(1-\alpha)\beta h^{y(3)} + \left(\frac{\alpha}{2} \frac{\beta}{2} \right) h^{y(3)} + \left(\frac{5}{34} \frac{5\alpha}{4} \frac{\beta}{8} \right) h^{y(3)} \\
& - \frac{1}{12} \left(1-\alpha \right) \beta h^{y(3)} + \left(\frac{\alpha}{2} \frac{\beta}{2} \right) h^{y(3)} + \left(\frac{5}{34} \frac{5\alpha}{4} \frac{\beta}{8} \right) h^{y(3)} + O(h^{y(3)})
\end{align*}
\]

The scheme (2.10) – (2.12) gives rise to a family of methods of different orders as follows:

For \(\alpha = \frac{1}{12} \) and \(\beta = \frac{10}{12} \), we get new scheme that produces numerical results better than both quadratic and cubic polynomial splines in [2, 3, 4].

2.1 Third order method

For \((w_0, w_1, w_2, w_3) = (24, -1, 0) d_1 \) where \(d_1 = 24 \).

Then the local truncation errors given by equation (2.16) are

\[
\begin{align*}
t_i &= \begin{bmatrix}
-247 \\
5760
\end{bmatrix} h^3 y^{(5)} + O(h^6), \quad i = 1, n \\
& - \frac{1}{240} h^5 y^{(6)} + O(h^7), \quad i = 2, 3, \ldots, n - 1
\end{align*}
\]

2.2 Fourth order method

For \((w_0, w_1, w_2, w_3) = (6007, -981, 981, -247)/d_2 \) where \(d_2 = 5760 \).

Then the local truncation errors given by equation (2.16) are

\[
\begin{align*}
t_i &= \begin{bmatrix}
23 \\
576
\end{bmatrix} h^6 y^{(6)} + O(h^7), \quad i = 1, n \\
& - \frac{1}{240} h^8 y^{(8)} + O(h^9), \quad i = 2, 3, \ldots, n - 1
\end{align*}
\]

Remark

1. When \(\alpha = \frac{1}{8} \) and \(\beta = \frac{6}{8} \), then the scheme (2.10) is reduced to quadratic polynomial spline in [2, 3].

2. When \(\alpha = \frac{1}{24} \) and \(\beta = \frac{22}{24} \), then the scheme (2.10) is reduced to cubic polynomial spline in [4] (3). When \(\alpha = \frac{1}{12} \) and \(\beta = \frac{10}{12} \), we get new scheme that produces numerical results better than both quadratic and cubic polynomial splines in [2, 3, 4].

3. Spline solutions

The spline solution of (1.1) with the boundary condition (1.2) is based on the linear equations given by (2.10) – (2.12), let

\[
Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}, \quad S = \begin{bmatrix} C_1 \end{bmatrix}, \quad T = \begin{bmatrix} t_i \end{bmatrix}, \quad E = \begin{bmatrix} e_{i} \end{bmatrix}
\]

where \(\alpha = \frac{247}{5760} \), \(\beta = \frac{380}{8} \), \(\alpha = \frac{380}{8} \), \(\beta = \frac{380}{8} \).

Then the local truncation errors given by equation (2.16) are

\[
\begin{align*}
& 2(1-\alpha)\beta h^{y(3)} + \left(\frac{\alpha}{2} \frac{\beta}{2} \right) h^{y(3)} + \left(\frac{5}{34} \frac{5\alpha}{4} \frac{\beta}{8} \right) h^{y(3)} \\
& - \frac{1}{12} \left(1-\alpha \right) \beta h^{y(3)} + \left(\frac{\alpha}{2} \frac{\beta}{2} \right) h^{y(3)} + \left(\frac{5}{34} \frac{5\alpha}{4} \frac{\beta}{8} \right) h^{y(3)} + O(h^{y(3)})
\end{align*}
\]

The matrix \(B \) has the form:

\[
B = \begin{bmatrix}
w_0 & w_1 & w_2 & w_3 \\
\alpha & \beta & \alpha & \cdot \\
\alpha & \beta & \alpha & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
w_3 & w_2 & w_1 & w_0
\end{bmatrix}
\]

For the vector \(C \), we have

\[
N_0 = \begin{bmatrix}
\begin{bmatrix}
-1 & 1 \\
1 & -2 & 1 \\
\cdot \\
1 & -2 & 1 \\
1 & -1
\end{bmatrix}
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
w_0 & w_1 & w_2 & w_3 \\
\alpha & \beta & \alpha & \cdot \\
\alpha & \beta & \alpha & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
w_3 & w_2 & w_1 & w_0
\end{bmatrix}
\]
\[C_i = \begin{cases} h A_i + h^2 \left[w_0 g_{i+1} + w_1 g_{i+2} + w_2 g_{i+3} + w_3 g_{i+4} \right], & i = 1 \\ h^2 \left[\alpha g_{i-1} + \beta g_{i} + \alpha g_{i+1} \right], & i = 2, 3, ..., n \end{cases}, \quad i = n \]

Set \(N_0 = M_0 + J_0 \) (3.6)

Where

\[
M_0 = \begin{pmatrix}
-3 & 1 \\
1 & -2 & 1 \\
& & \ddots \\
1 & -2 & 1 \\
& & & 1 & -3
\end{pmatrix}
\]

And

\[
J_0 = \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
& & \ddots \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2
\end{pmatrix}
\]

4. Convergence analysis

Our main purpose now is to derive a bound on \(\|E\|_\infty \). We now turn back to the error equation (iii) in (3.1) and rewrite it in the form

\[E = N^{-1} = \left(M_0 + J_0 + h^2 BF \right)^{-1} = (I + M_0^{-1}(J_0 + h^2 BF))^T \]

This implies that

\[\|E\|_\infty = \left\| (I + M_0^{-1}(J_0 + h^2 BF))^{-1} \right\|_\infty \leq \|M_0^{-1}\|_{\infty} \|T\|_{\infty} \] (4.1)

In order to derive the bound on \(\|E\|_\infty \), the following two lemmas are needed.

Lemma 4.1 ([10]). If \(G \) is a square matrix of order \(n \) and \(\|G\| < 1 \), then \((I + G)^{-1} \) exists and

\[\| (I + G)^{-1} \| = \frac{1}{1 - \|G\|} \]

Lemma 4.2; the matrix \((M_0 + J_0 + h^2 BF) \) is nonsingular if \(\|F\| < \frac{h^2 - 2w}{h^2 w (\beta + 2 \alpha)} \)

where

\[w = \frac{1}{8} \left(b - a \right)^2 + h^2 \]

Proof. Since,

\[N = (M_0 + J_0 + h^2 BF) = (I + M_0^{-1}(J_0 + h^2 BF))M_0 \]

and the matrix \(M_0 \) is nonsingular, so to prove \(N \) nonsingular it is sufficient to show \((I + M_0^{-1}(J_0 + h^2 BF)) \) nonsingular.

Moreover,

\[\|F\|_\infty \leq \|F\| = \max_{x \in [a,b]} |f(x)| \] (4.2)

\[\|M_0^{-1}\|_{\infty} \leq \frac{1}{\|M_0\|_{\infty}} \left[(b - a)^2 + h^2 \right], \quad \text{see [6]} \] (4.3)

\[\|J_0\|_{\infty} = 2 \] (4.4)

And \(\|B\|_{\infty} = 2 \alpha + \beta \) (4.5)

Also,

\[\|M_0^{-1}(J_0 + h^2 BF)\|_{\infty} = \|M_0^{-1}\|_{\infty} \|J_0\|_{\infty} + h^2 \|B\|_{\infty} \|F\|_{\infty} \] (4.6)

Therefore, substituting \(M_0^{-1}(J_0 + h^2 BF) \) in (4.6) we get

\[\|M_0^{-1}(J_0 + h^2 BF)\|_{\infty} \leq \frac{h^2}{8} \left((b - a)^2 + h^2 \right) \left[2 + h^2 (2 \alpha + \beta) \right] \|f\|_{\infty} \] (4.7)

Since, \(\|f\| < \frac{h^2 - 2w}{h^2 w (\beta + 2 \alpha)} \) (4.8)

Therefore, Eq. (4.8) leads to

\[\|M_0^{-1}(J_0 + h^2 BF)\|_{\infty} < 1 \] (4.9)

From Lemma 4.1, it shows that the matrix \(N \) is nonsingular. Since \(\|M_0^{-1}(J_0 + h^2 BF)\|_{\infty} < 1 \)

so using Lemma (4.1) and Eq. (4.1) follow that

\[\|E\|_{\infty} \leq \|M_0^{-1}\|_{\infty} \|T\|_{\infty} \] (4.10)

From Eq. (2.17) we have

\[\|F\|_{\infty} = \frac{247}{5760} h^5 M_5 ; M_5 = \max_{a \leq x \leq b} |y^{(5)}(x)| \]

Then

\[\|E\|_{\infty} \leq \frac{\|M_0^{-1}\|_{\infty} \|T\|_{\infty}}{1 - \|M_0^{-1}\|_{\infty} \|J_0 + h^2 BF\|_{\infty}} \equiv O \left(h^3 \right) \] (4.11)

Also, from Eq. (2.18) we have

\[\|T\|_{\infty} = \frac{23}{576} h^6 M_6 ; M_6 = \max_{a \leq x \leq b} |y^{(6)}(x)| \]
Then
\[
\|E\|_\infty \leq \frac{\|M_0^{-1}\|_{\infty} \|F\|_{\infty}}{1 - \|M_0^{-1}\|_{\infty} \|D\|_{\infty} + h^2 BF} \approx O(h^4)
\]
(4.12)

We summarize the above results in the next theorem.

Theorem 4.1

Let \(y(x) \) is the exact solution of the continuous boundary value problem (1.1) with the boundary condition (1.2) and let \(y_{i+1/2}, i = 0,1,..., n - 1 \), satisfies the discrete boundary value problem (ii) in (3.1). Further, if
\[
e_i, \sqrt{\frac{h}{2}} = y_{i+1/2} - S_i, \sqrt{\frac{h}{2}}
\]
1- \(|E|_\infty \leq O(h^3) \), for third order convergent method
2- \(|E|_\infty \leq O(h^4) \), for fourth order convergent method
Which are given by (4.11) and (4.12), neglecting all errors due to round off.

5. Numerical examples and discussion:

We now consider two numerical examples illustrating the comparative performance of cubic nonpolynomial spline method (ii) in (3.1) over quadratic nonpolynomial spline method and the two polynomial spline methods (quadratic and cubic). All calculations are implemented by MATLAB 7

Example 1

Consider the boundary value problem, see [5]
\[
y'' + y = -1
\]
(5.1)
\[
y^{(2)}(0) = \frac{1 - \cos(1)}{\sin(1)} = -y^{(1)}(1)
\]
The analytical solution of (5.1) is
\[
y(x) = \cos(x) + \frac{1 - \cos(1)}{\sin(1)} \sin(x) - 1
\]
(5.2)

Example 2

Consider the boundary value problem, see [5]
\[
y'' + xy' = (3 - x - x^2 + x^3) \sin(x) + 4x \cos(x)
\]
(5.3)
\[
y^{(2)}(0) = -1, \quad y^{(1)}(1) = 2 \sin(1)
\]
The analytical solution of (5.3) is
\[
y(x) = (x^2 - 1) \sin(x)
\]
(5.4)

The numerical results of examples 1 and 2 are presented in tables 1 and 2, respectively, for our fourth order method. A comparison between the method (2.10) and the existing methods in Ramadan et al. [5] are provided in tables 3 and 4.

| Table 1: Approximate, Exact Solutions and Maximum errors (in absolute value) for Example 1 using our fourth order. |
|---|---|---|
| \(n \) | \(S_i \) (approximated) | \(y_i \) (Exact) | \(E \) (Error) |
| 4 | 0.13068504600377 | 0.13060321651340 | 8.18295*10^5 |
| 8 | 0.13727099391989 | 0.13726907762415 | 1.91630*10^-6 |
| 16 | 0.13893760135665 | 0.13893757908329 | 2.22734*10^-8 |
| 32 | 0.00841355938534 | 0.00841356124929 | 1.86395*10^-9 |
| 64 | 0.00423742717666 | 0.00423742736291 | 1.95255*10^-10 |
| 128 | 0.00212635927486 | 0.00212635928910 | 1.42408*10^-11 |

Table 2: Approximate, Exact Solutions and Maximum errors (in absolute value) for Example 2 using our fourth order.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(S_i) (approximated)</th>
<th>(y_i) (Exact)</th>
<th>(E) (Error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-0.35932989074946</td>
<td>-0.35654365069809</td>
<td>2.78624*10^-3</td>
</tr>
<tr>
<td>8</td>
<td>-0.34264531263123</td>
<td>-0.3425817359850</td>
<td>6.33390*10^-5</td>
</tr>
<tr>
<td>16</td>
<td>-0.29719707294621</td>
<td>-0.29719640852255</td>
<td>6.64424*10^-7</td>
</tr>
<tr>
<td>32</td>
<td>-0.02582552960734</td>
<td>-0.02582552960734</td>
<td>6.88566*10^-9</td>
</tr>
<tr>
<td>64</td>
<td>-0.01303052171412</td>
<td>-0.01303052858255</td>
<td>6.86843*10^-10</td>
</tr>
<tr>
<td>128</td>
<td>-0.00654464520562</td>
<td>-0.00654464571154</td>
<td>5.05929*10^-11</td>
</tr>
</tbody>
</table>

Table 3: Maximum errors (in absolute value) for Example 1.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8.18295-5</td>
<td>8.18295-5</td>
<td>1.43181-3</td>
<td>2.85364-3</td>
<td>3.03488-3</td>
</tr>
<tr>
<td>8</td>
<td>1.91630-6</td>
<td>8.04854-6</td>
<td>1.75382-4</td>
<td>7.12633-4</td>
<td>7.69627-4</td>
</tr>
<tr>
<td>16</td>
<td>2.22734-8</td>
<td>5.91344-7</td>
<td>2.16003-5</td>
<td>1.78109-4</td>
<td>1.93094-4</td>
</tr>
<tr>
<td>32</td>
<td>1.86395-9</td>
<td>3.96416-8</td>
<td>2.67705-6</td>
<td>4.45241-5</td>
<td>4.83167-5</td>
</tr>
<tr>
<td>64</td>
<td>1.95255-10</td>
<td>2.56011-9</td>
<td>3.33110-7</td>
<td>1.11308-5</td>
<td>1.20818-6</td>
</tr>
<tr>
<td>128</td>
<td>1.42408-11</td>
<td>1.62945-10</td>
<td>4.15407-8</td>
<td>2.78270-6</td>
<td>3.02063-6</td>
</tr>
</tbody>
</table>
Table 4: Maximum errors (in absolute value) for Example 2.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2.78624-3</td>
<td>3.27323-3</td>
<td>2.2425-2</td>
<td>4.62182-2</td>
<td>4.94551-2</td>
</tr>
<tr>
<td>8</td>
<td>6.33390-5</td>
<td>3.03799-4</td>
<td>2.66946-3</td>
<td>1.15362-2</td>
<td>1.23088-2</td>
</tr>
<tr>
<td>16</td>
<td>6.64424-7</td>
<td>2.17464-5</td>
<td>3.24076-4</td>
<td>2.88302-3</td>
<td>3.08111-3</td>
</tr>
<tr>
<td>32</td>
<td>6.88566-8</td>
<td>1.43875-6</td>
<td>3.98761-5</td>
<td>7.20696-4</td>
<td>7.70391-4</td>
</tr>
<tr>
<td>64</td>
<td>6.86843-9</td>
<td>9.22972-8</td>
<td>4.94425-6</td>
<td>1.80171-4</td>
<td>1.92590-4</td>
</tr>
<tr>
<td>128</td>
<td>5.059294-10</td>
<td>5.84115-9</td>
<td>6.15517-7</td>
<td>4.50424-5</td>
<td>4.79946-5</td>
</tr>
</tbody>
</table>

6. Conclusion:
Two new methods are presented for solving second order two-point boundary value problem with Neumann conditions. These methods are shown to be optimal third and optimal fourth orders which are better than the two polynomial spline methods (quadratic and cubic splines) and quadratic nonpolynomial spline method. Moreover, nonpolynomial spline method has less computational cost over other polynomial spline methods. The obtained numerical results show that the proposed methods maintain a remarkable high accuracy which make them are very encouraging over other existing methods.

Corresponding author
Z.A. ZAli
Department of Engineering Mathematics and Physics,
Faculty of Engineering, Benha University, Shoubra,
Cairo, Egypt.
Zahmed_2@yahoo.com

7. References

6/22/2010