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Abstract: This paper presents a solution method for multi-objective nonlinear programming (MONLP) problems and stability of this solution. The method, offers a practical solution to MONLP problems by deriving the compromise weights and combining judgment with an automatic optimization technique in fuzzy decision making. This is achieved by using the method and algorithm of compromise programming and the method of compromise weights, and we obtain the stability for the solution in each step of the algorithm. A numerical example illustrates various aspects of the results developed in this paper. A maple procedure for this algorithm is introduced.  
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1. Introduction
Most decision problems have multiple objectives conflicting among themselves. The solution for such problems can only be obtained by trying to get compromises based on information provided by the decision maker (DM). Several methods have been developed to solve multiobjective decision making (MODM) problems, see [10]. In [5,8] some of these methods are based on prior information required from the DM. This information may be in the from the desired achievement levels of the objective functions and the ranking of the levels indicating their importance, such as in goal programming.  It may also be in the form of weights showing the importance of the objectives. The disadvantages with this method are that the DM cannot easily provide this prior information, since he has no idea about the solution process of the problem. Other methods, called interactive methods, have been developed in order to overcome this disadvantage. There are two categories of interactive methods. Interactive methods of the first type require the DM to provide some trade-offs among the attained values of the objective functions in order to determine the new solution [4]. The interactive methods of the second type require the DM to provide some preference information by comparing the various efficient solutions in the space of the objective functions or the decision variables.  The quantity and complexity of the information required from the DM in such methods are important factors affecting the chances of reaching the best compromise solution. In [3, 7] an interactive linear multiple objective method, called interactive compromise programming (ICP) were introduced. The notions of the solvability set, stability set of the first kind and stability set of the second kind, and analyzed these concepts for parametric convex nonlinear programming problems were introduced in [6, 9].
This paper is presented an interactive stability compromise programming method for solving MONLP problems by using the compromise weights from the pay-off table and fuzzy membership function for each objective function. An illustrative example is given to clarify the obtained results. 
2. Problem Formulation
Let us consider the MONLP problem:
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The corresponding scalarization problem is  


[image: image6.wmf](

)

MONLP

l



[image: image7.wmf](

)

1

max

l

=

å

m

ii

i

fx


                            subject to  
[image: image8.wmf]xX

Î

,
Where
[image: image9.wmf](

)

1

,...,0,0,1,2,...,

mi

im

llll

=¹³=

, and 
[image: image10.wmf]1

1.

m

i

i

l

=

=

å


Let 
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, respectively. To obtain the compromise solution of the MONLP problem, find the solution which has a minimum distance with respect to the ideal solution
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. This requires normalization of the objective functions and appropriate choice for the distance measure. The solution found in this way is a reduced set of all efficient solution. The set of compromise solution may be large, and also the choice of weights by the DM may be difficult. These difficulties could be reduced by combining the basic ideas for the methods of compromise programming and compromise weights.
3. Compromise Weights  
Here, we introduce a method based on the following two main ideas:
First, the DM could state his preference among some alternative solutions more easily if the values of objective functions were measured on the some scale varying between zero and one. This could be done by employing “the membership function for the objective functions “concept in the compromise programming. In order to elicit a membership function
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under the given constraints.  By taking account of the calculated individual minimum and maximum of each objective function together with the rate of increase of membership of the increase ction, DM must determine his subjective membership function 
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In this method, the following definition of the membership functions is used for scaling:
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The corresponding scalarization problem is:
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               subject to  
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The second main idea, one of the main drawbacks of the interactive methods is the difficulty of getting the weights of the objective functions from the DM even if values of objective functions are presented to him on the same scale.
In this method , the compromise weights of objective functions can be obtained by constructing the pay-off table displaying values of objective  functions at 
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4. Stability set of the first kind [7]
Definition 1. The solvability set of problem 
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It is clear that the stability set of the first kind is the set of all parameters corresponding to an optimal solution of the scalarizing problem.
Let 
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that means, we order the function 
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Consider the system of equations
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(I)

It represent n linear homogenous equations in m+s unknowns
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5. Interactive compromise algorithm 
In this method, the solution process by solving 2m simple nonlinear programming problems to find the maximum and minimum possible values of m objective under the given constraints.
The compromise weights of the objective functions are determine from the Eq.(3) and employed in the problem (2) we have 

           
[image: image94.wmf](

)

(

)

1

1

max

m

i

m

if

f

i

xx

mlm

+

=

=

å


subject to   
[image: image95.wmf]xX

Î


Where: 
[image: image96.wmf](

)

1

m

f

x

m

+

 is the composite function of 
[image: image97.wmf](

)

i

f

x

m

 and it determines the 
[image: image98.wmf](

)

1

mth

+

 solution .    

The steps of the algorithm can be summarized as follows:
Step 1. Determine  
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Step 2. Determine the membership functions corresponding the solution 
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Construct the pay-off table
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Step 3: The compromise weights 
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Step 4: By using this weights, we establish the new compromise solution
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Step 5. Determine the stability set of the first kind corresponding to this solution as in relations (I) and (II). 

Step 6: Determine the membership objective functions of the new solution of the problem in step 4, 
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Step 7: Ask the DM whether he prefers one solution strictly over all the other m-solutions if he does go to step 8 , otherwise ask him his least preferred solution among all the others. Then replace this preferred solution by the new found in step 6 and go to step 3.

Step 8: Stop. 
6. Numerical example

Let us consider the following problem
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The solution of this example will be obtained using a Maple program:
Step1.
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Step 2.the corresponding pay- off table is 
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the corresponding fuzzy matrix is 
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Step 3. substitute of pay- off table in relation (3) to obtain the corresponding compromise weights 
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Step 4. The new composite membership function is 
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The solution is  
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Step 5. The set of all parameters which corresponds to this solution is defined by the stability set of the first kind in the following form:
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Therefore, the new fuzzy matrix is   
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Step 7. Present the three solution to DM if he is certain that one of them is the best solution of the problem (not only preferred regarding the other two ), stop. Else, ask DM whether he prefers one solution over the two solutions. Suppose that he would not, and his least preferred solution would be solution 2. This solution is then replaced by solution 3 return to Step 3.

The new pay-off table is 
	
	
[image: image193.wmf]1

f


	
[image: image194.wmf]2

f



	
[image: image195.wmf]1

f


	4.504950495
	5

	
[image: image196.wmf]2

f


	0.2450740124
	0


By using relation (3) we obtain the compromise weights 
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We note that these weights are out of the range of parameters which were defined in the above set 
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The new composite membership function is
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Which solution is  
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, the corresponding stability set of the first kind is
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We have the corresponding membership function in the form
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Therefore the fuzzy matrix is 
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Suppose the DM would prefer the new solution over these solutions. Go to Step 8.

Step 8. Stop. The best compromise solution of this problem would be 
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7. Conclusion
An interactive stability compromise programming method, using a fuzzy approach and a pay-off table. In this method, no prior information is required from the DM and the compromise weights of the objective functions are determined from the pay-off table and fuzzy matrix. The method does not require significantly more data than pure nonlinear programming and the scale of multi-objective problem by using substituting the objective functions by the membership function and to obtain compromise weights by the grades of membership of the current vectors in each iteration in the "close ideal" fuzzy set.
The proposed algorithm programmed by using Maple program. 
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9. Appendix

A maple program for solving multi-objective nonlinear programming (MONLP) problems and stability of this solution.
> restart: with(Optimization): with(Maplets[Elements]): with(Groebner):
> maplo:=Maplet(["Enter The Type of The Problem", [Button("Minimize",Shutdown("Minimize")),Button("Maximize",Shutdown("Maximize")) ]]):

d:=Maplets[Display](maplo):dm:=parse(d);

ma := Maplet([["Enter No of Vector Spaces", TextField['TF']()],

[Button("ok",Shutdown(['TF']))]]):

n1:=Maplets[Display](ma):n:=parse(n1[1]);

q1:="a":i:=0:

while(q1="a") do

i:=i+1:

maplet := Maplet([["Enter an Objective function ", TextField[TF1]()],[Button['b']("ok",Shutdown( [TF1]))]]):

t[i]:=Maplets[Display](maplet);

maplet2 := Maplet([[Label("Enter Another objective function?:")],

[Button['B1']("Ok",Shutdown("a"))],
[Button['B2']("No",Shutdown())]]):

q1:= Maplets[Display](maplet2):

end do:
> m:=i;
> for i from 1 to m do

f[i]:=parse(t[i][1]);

end do;
> q2:="a":i:=0:

while(q2="a")do

i:=i+1:

mapl1 := Maplet([["Enter Your Constraints", TextField[TF1]()],

[Button['b']("ok",Shutdown( [TF1]))]]):

t1[i]:=Maplets[Display](mapl1);

mapl2 := Maplet([

[Label("Enter Another Constraint?: ")],

[Button['B1']("Ok", Shutdown("a"))],[Button['B2']("No", Shutdown())]]):

q2:= Maplets[Display](mapl2):

end do:
> k:=i;
> for i from 1 to k do

g[i]:=parse(t1[i][1]);

end do;
> for i from 1 to m do

for j from 1 to k do
> Q[i]:=Maximize(f[i], {g[j]}, assume=nonnegative); P[i]:=Minimize(f[i], {g[j]}, assume=nonnegative);
> end do;Q[i];P[i];end do;
> for i from 1 to m do

for j from 2 to m+1 do
> R1[i,j]:=rhs(Q[i][2][j-1]);
> # Minimization.
> S1[i,j]:=rhs(P[i][2][j-1]);end do;

end do;

> nnn:=proc(R1,S1,Q,P,f,g,n,m,k,MU1)

local R,i,j,K,MUf,A,alpha,FN,MuF,mx,f1,f2,f3,f4,f5,f6, maplet3:

global S,Mu,Lamda,Z,eq,ss,eq1,rr,su1,su2,lam, alph,kk,UU,U:

for i from 1 to m do
> # Maximization.

R[i,1]:=Q[i][1];
> # Minimization.
> S[i,1]:=P[i][1];

for j from 2 to m+1 do

R[i,j]:=R1[i,j]; 

S[i,j]:=S1[i,j];
end do: end do:
> Z:=Matrix(1..m,1..m+1):
> for i from 1 to m do

for j from 1 to m do

f5[i]:=f[i]:f4[i]:=f[i]:

if i=j then 

kk:=1:

while(kk<=m) do

f1[i]:=subs(x[kk]=S[i,kk+1],f5[i]):

f5[i]:=f1[i]:kk:=kk+1:

end do:

Z[i,i]:=f5[i]:

else

kk:=1:

while(kk<=m) do

f2[i]:=subs(x[kk]=S[j,kk+1],f4[i]):

f4[i]:=f2[i]:kk:=kk+1:

end do:

Z[i,j]:=f4[i]:

end if:end do;

end do;Z;

for i from 1 to m do
> MUf[i]:=(f[i]-S[i,1])/(R[i,1]-S[i,1]):
> end do;

Mu:=Matrix(1..m,1..m+2):
> for i from 1 to m do
> for j from 1 to m do
> Mu[i,j]:=(Z[i,j]-S[i,1])/(R[i,1]-S[i,1]);end do;
> Mu[i,m+1]:=R[i,1];
> end do: Mu;
> mx:=Array(1..m):

for i from 1 to m do

mx[i]:=Z[i,1];

for j from 1 to m do

if (mx[i]<Z[i,j]) then mx[i]:=Z[i,j]; end if;

end do; end do; mx;

Lamda:=Array(1..m):

A:=Array(1..m):for i from 1 to m do
> A[i]:=mx[i]-Z[i,i];
> end do;
> alpha:=ln(abs(add((A[i]/A[m]),i=1..m)))/(A[m]-A[m-1]);
> for i from 1 to m do
> Lamda[i]:=exp(alpha*A[i])/add(exp(alpha*A[k1]),k1=1..m);
> end do;
> add(Lamda[i],i=1..m);
> FN:=add(Lamda[i]*MUf[i],i=1..m);
> for i from 1 to k do

MuF:=dm(FN, {g[k]}, assume=nonnegative);

end do:
> for j from 2 to n+1 do

S[m+1,j]:= rhs(MuF[2][j-1]); end do;

lam:=Vector(m,symbol=la):UU:=Vector(k,symbol=U):
> for alph from 1 to n do

su1:=add(diff(f[i],x[alph])*lam[i],i=1..m);

su2:=add(diff(lhs(g[j]),x[alph])*UU[j],j=1..k);

> eq[alph]:=su1+su2;

end do:
> for i from 1 to m do
> j:=1:

f6[i]:=f[i]:

while(j<=m) do

f3[i]:=subs(x[j]=S[m+1,j+1],f6[i]);

f6[i]:=f3[i]:j:=j+1:

end do:

Z[i,m+1]:=f6[i]; 
> end do;Z;
> for i from 1 to m do
> Mu[i,m+2]:=Mu[i,m+1];

Mu[i,m+1]:=(Z[i,m+1]-S[i,1])/(R[i,1]-S[i,1]);
> end do:MU1:=print("Mu=",Mu);#eq1:=print("eq=",eq);

end proc:
> nnn(R1,S1,Q,P,f,g,n,m,k,MU1);

RS:=Array(1..n):RS1:=Array(1..n):

for alph from 1 to n do

rr1:=eq[alph]:rr11:=eq[alph]: j:=1:

while(j<=m) do

rr:=subs([la[j]=Lamda[j],x[j]=S[m+1,j+1]],rr1):

r:=subs([x[j]=S[m+1,j+1]],rr11):

rr1:=rr: rr11:=r: j:=j+1:

end do:RS[alph]:=rr1;

RS1[alph]:=rr11;

end do:RS1;#RS;

syst:= [seq(RS[alph],alph=1..n)];
> var:=[seq(U[i],i=1..k)];

bs:=0;

printlevel :=4:

if IsProper(syst)=true then 

B:=solve(syst,var);

for i from 1 to k do

if rhs(B[1][i])<0 then bs:=bs+1 end if:

end do:

if bs>=1 then "not stable" else "stable" end if;

else

"System is not stable" ;

 end if; 

> maplet3 := Maplet([["agree these values?"],

[Button['q']("&OK", Shutdown("yes")), Button['q1']("&No",Shutdown("No"))]]):

ss:=Maplets[Display](maplet3):

for i from 2 to n+1 do

print("x",m+1,"=",S[m+1,i]);end do;print("Pay-Table=",Z);print("Lamda=", Lamda);

> while ss="No" do 

mapl1:=Maplet([["Enter the no of x you want to replace with",TextField['TF']()],[Button("ok",Shutdown(['TF']))]]):

d1:=Maplets[Display](mapl1):

d2:=parse(d1[1]):

unassign('ss');unassign('Mu');unassign('Lamda');unassign('Z');unassign('eq');unassign('MU1');
> for i from 1 to m do
> R1[d2,i+1]:=S[m+1,i+1];
> S1[d2,i+1]:=S[m+1,i+1];

for j from 1 to d2-1 do

S1[j,i+1]:=S[j,i+1];

end do;

for j from d2+1 to m do

S1[j,i+1]:=S[j,i+1];

end do;

end do;
> nnn(R1,S1,Q,P,f,g,n,m,k,MU1);
> maplet3 := Maplet([["agree these values?"],

[Button['q']("&OK", Shutdown("yes")), Button['q1']("&No",Shutdown("No"))]]):

ss:=Maplets[Display](maplet3):
> end do:

RS:=Array(1..n):RS1:=Array(1..n):

for alph from 1 to n do

rr1:=eq[alph]:rr11:=eq[alph]:

j:=1:

while(j<=m) do

rr:=subs([la[j]=Lamda[j],x[j]=S[m+1,j+1]],rr1):

r:=subs([x[j]=S[m+1,j+1]],rr11):

rr1:=rr: rr11:=r: j:=j+1:

end do:RS[alph]:=rr1;

RS1[alph]:=rr11;

end do:RS1;#RS;

syst:= [seq(RS[i],i=1..n)]:
> var:=[seq(U[i],i=1..k)]:

bs:=0;
> if IsProper(syst)=true then 

B:=solve(syst,var);

for i from 1 to k do

if rhs(B[1][i])<0 then bs:=bs+1 end if:

end do:

if bs>=1 then "not stable" else "stable" end if;

else

"System is not stable" ;

 end if; 

> if ss="yes" then

mapl4:=Maplet([["Which one you prefere, x(",TextField['TF'](),")"],[Button("ok",Shutdown(['TF']))]]):

dd:=Maplets[Display](mapl4):

d3:=parse(dd[1]):
> end if:
> for i from 1 to m do
> zz[i]:=subs({x[1]=S[d3,2],x[2]=S[d3,3]},f[i]);
> l:=d3;
> end do:

print("Mu=",Mu);
> for i from 1 to  m do
> print("x=",S[l,i+1]);end do:

for i from 1 to  m do

print("fmin=",zz[i]);
> end do;

for i from 1 to  m do
> print("Mu=",Mu[i,l]);
> end do;print("Pay-Table=",Z);print("Lamda=",Lamda);
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