Journal of American Science, 2010;6(11) http://www.americanscience.org
Journal of American Science, 2011;7(1) http://www.jofamericanscience.org

Interactive Compromise Stability of Multi-objective Nonlinear Programming problems
Kassem, M.(1)*, El-Benna, A.(1), and El-Badry, N.(2)

(1) Mathematics department, Faculty of Science, Tanta University

(2) Mathematics department, Faculty of Science, Damietta Branch, Mansoura University

Abstract: This paper presents a solution method for multi-objective nonlinear programming (MONLP) problems and stability of this solution. The method, offers a practical solution to MONLP problems by deriving the compromise weights and combining judgment with an automatic optimization technique in fuzzy decision making. This is achieved by using the method and algorithm of compromise programming and the method of compromise weights, and we obtain the stability for the solution in each step of the algorithm. A numerical example illustrates various aspects of the results developed in this paper. A maple procedure for this algorithm is introduced.
[Kassem, M., El-Benna, A., and El-Badry, N., Interactive Compromise Stability of Multi-objective Nonlinear Programming problems. Journal of American Science 2011;7(1):222-229]. (ISSN: 1545-1003). http://www.jofamericanscience.org.
Keywords: MONLP; Stability; Interactive decision making; Compromise weights; Membership functions.
1. Introduction
Most decision problems have multiple objectives conflicting among themselves. The solution for such problems can only be obtained by trying to get compromises based on information provided by the decision maker (DM). Several methods have been developed to solve multiobjective decision making (MODM) problems, see [10]. In [5,8] some of these methods are based on prior information required from the DM. This information may be in the from the desired achievement levels of the objective functions and the ranking of the levels indicating their importance, such as in goal programming. It may also be in the form of weights showing the importance of the objectives. The disadvantages with this method are that the DM cannot easily provide this prior information, since he has no idea about the solution process of the problem. Other methods, called interactive methods, have been developed in order to overcome this disadvantage. There are two categories of interactive methods. Interactive methods of the first type require the DM to provide some trade-offs among the attained values of the objective functions in order to determine the new solution [4]. The interactive methods of the second type require the DM to provide some preference information by comparing the various efficient solutions in the space of the objective functions or the decision variables. The quantity and complexity of the information required from the DM in such methods are important factors affecting the chances of reaching the best compromise solution. In [3, 7] an interactive linear multiple objective method, called interactive compromise programming (ICP) were introduced. The notions of the solvability set, stability set of the first kind and stability set of the second kind, and analyzed these concepts for parametric convex nonlinear programming problems were introduced in [6, 9].
This paper is presented an interactive stability compromise programming method for solving MONLP problems by using the compromise weights from the pay-off table and fuzzy membership function for each objective function. An illustrative example is given to clarify the obtained results.
2. Problem Formulation
Let us consider the MONLP problem:

[image: image1.wmf](

)

(

)

(

)

(

)

(

)

12

MONLP:max,,...,

m

fxfxfx

Subject to

[image: image2.wmf](

)

{

}

0,1,2,...,

n

j

xXxRgxjk

Î=Î£=

where
[image: image3.wmf](

)

,1,...,,

i

fxim

=

 and
[image: image4.wmf](

)

,1,...,

j

gxjk

=

, are convex real valued functions which belong to class
[image: image5.wmf](

)

1

C

.
The corresponding scalarization problem is

[image: image6.wmf](

)

MONLP

l

[image: image7.wmf](

)

1

max

l

=

å

m

ii

i

fx

 subject to
[image: image8.wmf]xX

Î

,
Where
[image: image9.wmf](

)

1

,...,0,0,1,2,...,

mi

im

llll

=¹³=

, and
[image: image10.wmf]1

1.

m

i

i

l

=

=

å

Let
[image: image11.wmf](

)

.

i

fx

 be the ith objective function and
[image: image12.wmf](

)

U

i

fx

 be the maximum possible values of
[image: image13.wmf](

)

i

fx

 found under the constraints
[image: image14.wmf](

)

1

i

fx

, respectively. To obtain the compromise solution of the MONLP problem, find the solution which has a minimum distance with respect to the ideal solution
[image: image15.wmf](

)

U

i

fx

. This requires normalization of the objective functions and appropriate choice for the distance measure. The solution found in this way is a reduced set of all efficient solution. The set of compromise solution may be large, and also the choice of weights by the DM may be difficult. These difficulties could be reduced by combining the basic ideas for the methods of compromise programming and compromise weights.
3. Compromise Weights
Here, we introduce a method based on the following two main ideas:
First, the DM could state his preference among some alternative solutions more easily if the values of objective functions were measured on the some scale varying between zero and one. This could be done by employing “the membership function for the objective functions “concept in the compromise programming. In order to elicit a membership function
[image: image16.wmf](

)

i

f

x

m

from bjective functions
[image: image17.wmf](

)

i

fx

in MONLP problems, we first calculate the individual minimum
[image: image18.wmf]L

i

f

and maximum
[image: image19.wmf]U

i

f

of each objective function
[image: image20.wmf](

)

i

fx

under the given constraints. By taking account of the calculated individual minimum and maximum of each objective function together with the rate of increase of membership of the increase ction, DM must determine his subjective membership function
[image: image21.wmf](

)

i

f

x

m

which is a strictly monotone increasing function with respect to
[image: image22.wmf](

)

i

fx

.
Here, it is assumed that

[image: image23.wmf](

)

0

i

f

x

m

=

 or
[image: image24.wmf]0

®

 if
[image: image25.wmf](

)

L

ii

fxf

£

 and

[image: image26.wmf](

)

1

i

f

x

m

=

 or
[image: image27.wmf]1

®

 if
[image: image28.wmf](

)

U

ii

fxf

³

,
Where,
[image: image29.wmf]a

i

f

represents the value of
[image: image30.wmf](

)

i

fx

 such that the value of membership function
[image: image31.wmf](

)

i

f

x

m

 is a. The
In this method, the following definition of the membership functions is used for scaling:

[image: image32.wmf](

)

(

)

,

i

L

ii

f

UL

ii

fxf

x

ff

m

-

=

-

 (1)
Where
[image: image33.wmf](

)

i

fx

 are the objective functions,
[image: image34.wmf]U

i

f

 are the maximum possible values of
[image: image35.wmf](

)

,1,2,...,

i

fxim

=

 and
[image: image36.wmf]L

i

f

are the minimum possible values of
[image: image37.wmf](

)

i

fx

 satisfying the constraints
[image: image38.wmf]xX

Î

.The
[image: image39.wmf](

)

i

f

x

m

are defined as the membership functions of
[image: image40.wmf](

)

i

fx

 to the possible value
[image: image41.wmf](

)

i

fx

.
The corresponding scalarization problem is:

[image: image42.wmf](

)

(

)

1

1

max

m

i

m

if

f

i

xx

mlm

+

=

=

å

 (2)
 subject to
[image: image43.wmf]xX

Î

 .
The second main idea, one of the main drawbacks of the interactive methods is the difficulty of getting the weights of the objective functions from the DM even if values of objective functions are presented to him on the same scale.
In this method , the compromise weights of objective functions can be obtained by constructing the pay-off table displaying values of objective functions at
[image: image44.wmf]1

,...,

m

xx

, where
[image: image45.wmf]i

x

solves
[image: image46.wmf](

)

max,1,...,,

i

fxim

=

subject to
[image: image47.wmf]xX

Î

. A pay- off table is

[image: image48.wmf]12

2

1

1111

1

2

2222

12

12

im

jm

jm

m

i

iiii

j

m

mmmm

ffff

f

ffff

f

ffff

f

ffff

f

ffff

*

*

*

*

LL

LL

LL

MMMMM

LL

MMMMM

LL

Where:
[image: image49.wmf](

)

i

ii

ffx

*

=

 and
[image: image50.wmf](

)

jj

ii

ffx

=

 for each

[image: image51.wmf]1,...,,1,...,

imjm

==

 and
[image: image52.wmf]ij

¹

the compromise weights
[image: image53.wmf],1,2,...,

i

im

l

=

 can be obtained from the pay-off matrix by the formula,

[image: image54.wmf]1

,1,2,...,

i

i

a

i

m

a

i

e

im

e

a

a

l

=

==

å

,
[image: image55.wmf]*

1

1

1

ln,,1,2,...,.

m

i

iii

i

mmm

a

affim

aaa

a

=

-

==-=

-

å

)

(3)
where
[image: image56.wmf](

)

max

i

ii

ffx

=

)

 is the maximum entry in row i.
4. Stability set of the first kind [7]
Definition 1. The solvability set of problem
[image: image57.wmf](

)

l

MONLP

is defined by

[image: image58.wmf](

)

1

maxexists

ll

+

Î

=

ìü

=Î

íý

îþ

å

m

m

ii

xX

i

BRfx

,
Where:
[image: image59.wmf]+

m

R

is the nonnegative orthant of the vector parameter
[image: image60.wmf]l

.
Definition 2. Suppose that
[image: image61.wmf]¹Æ

B

 with a corresponding optimal point
[image: image62.wmf]x

, then the stability set of the first kind of problem
[image: image63.wmf](

)

l

MONLP

corresponding to
[image: image64.wmf]x

 is defined by

[image: image65.wmf](

)

(

)

(

)

11

max

lll

Î

==

ìü

=Î=

íý

îþ

åå

mm

iiii

xX

ii

SxBfxfx

.

It is clear that the stability set of the first kind is the set of all parameters corresponding to an optimal solution of the scalarizing problem.
Let
[image: image66.wmf](

)

Sx

l

Î

then there exist
[image: image67.wmf]k

uR

Î

such that
[image: image68.wmf](

)

,

xu

solves the following Kuhn-Tucker problem:

[image: image69.wmf](

)

(

)

1

0,1,2,...,,

m

ij

ij

ijJ

fxgx

un

xx

aa

la

=Ï

¶¶

+==

¶¶

åå

[image: image70.wmf](

)

(

)

0,0,1,2,...,,

j

jj

gxugxjk

£==

[image: image71.wmf]{

}

{

}

0,1,2,...,,0,

1,2,...,,

jj

ujJku

jkJ

=ÎÌ³

Î-

that means, we order the function
[image: image72.wmf](

)

j

gx

,
 j=1,2,…,k, in such a way that

[image: image73.wmf]{

}

1,2,...,

js

Î

if
[image: image74.wmf](

)

0,

j

gx

=

[image: image75.wmf]{

}

1,...,

jsk

Î+

if
[image: image76.wmf](

)

0.

j

gx

<

Consider the system of equations

[image: image77.wmf](

)

(

)

11

0,

1,2,...,.

ms

ij

ij

ij

fxgx

u

xx

n

aa

l

a

==

¶¶

+=

¶¶

=

åå

(I)

It represent n linear homogenous equations in m+s unknowns
[image: image78.wmf],1,2,...,,

i

im

l

=

and
[image: image79.wmf],1,2,...,,

j

ujs

=

 which can be solved explicitly.

Suppose that
[image: image80.wmf]0,1,2,...,,and0,

ij

imu

l

**

³=³

 j=1,2,…,s, solve the above system of equations, then it is clear that
[image: image81.wmf](

)

,

xu

solves the Kuhn-Tucker problem , where
[image: image82.wmf],1,2,...,,0,

jj

j

uujsu

*

===

j=s+1,…,k, and hence
[image: image83.wmf](

)

Sx

l

*

Î

.
Let us define the set

[image: image84.wmf](

)

(

)

(

)

{

}

,,,solves the system (I),

ms

PuuRu

lll

+

+

=Î

Where:
[image: image85.wmf] and

ms

RR

++

 are the nonnegative orthants of the
[image: image86.wmf]m

R

 vector
[image: image87.wmf]l

-

space, and
[image: image88.wmf]s

R

vector
[image: image89.wmf]u

-

space, respectively. Then

[image: image90.wmf](

)

(

)

(

)

{

}

,,.

m

SxRuPu

lll

+

=ÎÎ

(II)
If
[image: image91.wmf](

)

0,1,2,...,,

j

gxjk

<=

then it is easy to see that
[image: image92.wmf](

)

Sx

can be written in the following form:

[image: image93.wmf](

)

(

)

1

0,1,2,...,.

m

i

m

i

i

fx

SxRn

x

a

lla

+

=

ìü

¶

ïï

=Î==

íý

¶

ïï

îþ

å

5. Interactive compromise algorithm
In this method, the solution process by solving 2m simple nonlinear programming problems to find the maximum and minimum possible values of m objective under the given constraints.
The compromise weights of the objective functions are determine from the Eq.(3) and employed in the problem (2) we have

[image: image94.wmf](

)

(

)

1

1

max

m

i

m

if

f

i

xx

mlm

+

=

=

å

subject to
[image: image95.wmf]xX

Î

Where:
[image: image96.wmf](

)

1

m

f

x

m

+

 is the composite function of
[image: image97.wmf](

)

i

f

x

m

 and it determines the
[image: image98.wmf](

)

1

mth

+

 solution .

The steps of the algorithm can be summarized as follows:
Step 1. Determine
[image: image99.wmf],

UL

ii

ff

 for all i=1,…,m, as follows:
(i)
[image: image100.wmf](

)

max

i

fx

 subject to
[image: image101.wmf],

xX

Î

The solutions of this problem are
[image: image102.wmf]iU

x

 and
[image: image103.wmf]U

i

f

which are known as the "ideal solution".
(ii)
[image: image104.wmf](

)

min

i

fx

 subject to
[image: image105.wmf],

xX

Î

The solution is
[image: image106.wmf]iL

x

and
[image: image107.wmf]L

i

f

which are known as the "anti -ideal solution".
Step 2. Determine the membership functions corresponding the solution
[image: image108.wmf],1,2,...,

iU

xim

=

 as in the relation (1).

Construct the pay-off table

[image: image109.wmf]12

2

1

1111

1

2

2222

12

12

im

jm

jm

m

i

iiii

j

m

mmmm

ffff

f

ffff

f

ffff

f

ffff

f

ffff

*

*

*

*

LL

LL

LL

MMMMM

LL

MMMMM

LL

where
[image: image110.wmf]i

x

solves

[image: image111.wmf](

)

min,1,2,...,

i

fxim

=

 ,
[image: image112.wmf](

)

i

ii

ffx

*

=

 subject to
[image: image113.wmf]xX

Î

,

[image: image114.wmf](

)

jj

ii

ffx

=

for each i=1,…,m, j=1,2,…,m,

[image: image115.wmf]ij

¹

and construct fuzzy matrix.
	
[image: image116.wmf]j

i

f

m

	
[image: image117.wmf]1

x

	
[image: image118.wmf]2

x

	…
	
[image: image119.wmf]m

x

	
[image: image120.wmf]u

f

	
[image: image121.wmf]1

f

	
[image: image122.wmf]1

1

f

m

	
[image: image123.wmf]2

1

f

m

	…
	
[image: image124.wmf]1

m

f

m

	
[image: image125.wmf]1

U

f

	
[image: image126.wmf]2

f

	
[image: image127.wmf]1

2

f

m

	
[image: image128.wmf]2

2

f

m

	…
	
[image: image129.wmf]2

m

f

m

	
[image: image130.wmf]2

U

f

	(
	(
	(
	
	(
	(

	
[image: image131.wmf]m

f

	
[image: image132.wmf]1

m

f

m

	
[image: image133.wmf]2

m

f

m

	…
	
[image: image134.wmf]m

m

f

m

	
[image: image135.wmf]U

m

f

Step 3: The compromise weights
[image: image136.wmf],1,2,...,

i

im

l

=

 can be found from

[image: image137.wmf]1

,1,2,...,

i

i

a

i

m

a

i

e

im

e

a

a

l

=

==

å

,

[image: image138.wmf]*

1

1

1

ln,,1,2,...,.

m

i

iii

i

mmm

a

affim

aaa

a

=

-

==-=

-

å

)

[image: image139.wmf](

)

max

i

ii

ffx

=

)

 is the maximum entry in row
[image: image140.wmf]i

.
Step 4: By using this weights, we establish the new compromise solution
[image: image141.wmf]1

m

x

+

, from the problem (2).

Step 5. Determine the stability set of the first kind corresponding to this solution as in relations (I) and (II).

Step 6: Determine the membership objective functions of the new solution of the problem in step 4,
[image: image142.wmf]1

m

f

m

+

.Add this column to table of fuzzy in step 2.

Step 7: Ask the DM whether he prefers one solution strictly over all the other m-solutions if he does go to step 8 , otherwise ask him his least preferred solution among all the others. Then replace this preferred solution by the new found in step 6 and go to step 3.

Step 8: Stop.
6. Numerical example

Let us consider the following problem

[image: image143.wmf](

)

(

)

(

)

2

112

2

212

min,

min5,

fxxx

fxxx

=+

=-+

 Subject to
[image: image144.wmf]22

12

25,

xx

+£

[image: image145.wmf]12

0, 0.

xx

³³

The solution of this example will be obtained using a Maple program:
Step1.
(I)
[image: image146.wmf](

)

2

112

max

fxxx

=+

,

 subject to
[image: image147.wmf]22

12

25,

xx

+£

[image: image148.wmf]12

0, 0.

xx

³³

 solution
[image: image149.wmf](

)

1

0.5,4.97,

U

x

=

[image: image150.wmf]1

25.25

U

f

=

 .
(II)
[image: image151.wmf](

)

(

)

2

2

212

max5,

fxxx

=-+

 subject to
[image: image152.wmf]22

12

25,

xx

+£

[image: image153.wmf]12

0, 0.

xx

³³

 solution
[image: image154.wmf](

)

2

0,5,

U

x

=

[image: image155.wmf]2

30

U

f

=

.
(III)
[image: image156.wmf](

)

2

112

min

fxxx

=+

 subject to
[image: image157.wmf]22

12

25,

xx

+£

[image: image158.wmf]12

0, 0.

xx

³³

 solution
[image: image159.wmf](

)

1

0,0,

L

x

=

[image: image160.wmf]1

0

L

f

=

.
(IV)
[image: image161.wmf](

)

(

)

2

2

212

min5,

fxxx

=-+

 subject to
[image: image162.wmf]22

12

25,

xx

+£

[image: image163.wmf]12

0, 0.

xx

³³

 solution
[image: image164.wmf](

)

2

5,0,

L

x

=

[image: image165.wmf]2

0

L

f

=

.
Step 2.the corresponding pay- off table is
	
	
[image: image166.wmf]1

f

	
[image: image167.wmf]2

f

	
[image: image168.wmf]1

f

	0
	5

	
[image: image169.wmf]2

f

	25
	0

where
[image: image170.wmf](

)

(

)

22

112

5,0

5,

fxxx

éù

=+=

ëû

[image: image171.wmf](

)

(

)

(

)

2

12

212

0,0

525

fxxx

éù

=-+=

ëû

.
the corresponding fuzzy matrix is
	
[image: image172.wmf]j

i

f

m

	
[image: image173.wmf]1

x

	
[image: image174.wmf]2

x

	
[image: image175.wmf]u

f

	
[image: image176.wmf]1

f

	0
	0.1980
	25.25

	
[image: image177.wmf]2

f

	0.8333
	0
	30

Step 3. substitute of pay- off table in relation (3) to obtain the corresponding compromise weights
[image: image178.wmf]1

0.4545

l

=

 and
[image: image179.wmf]2

0.54545

l

=

Step 4. The new composite membership function is

[image: image180.wmf](

)

(

)

3

2

22

1212

0.45450.54545

minmin5

25.2530

f

xxxxx

m

ìü

éù

éù

=++-+

íý

ëû

ëû

îþ

Subject to
[image: image181.wmf]22

12

25,

xx

+£

[image: image182.wmf]12

0, 0.

xx

³³

The solution is
[image: image183.wmf](

)

(

)

(

)

33

1

3

2

4.504950495,0,4.504950495,

.2450740124

xfx

fx

==

=

Step 5. The set of all parameters which corresponds to this solution is defined by the stability set of the first kind in the following form:

[image: image184.wmf](

)

{

}

3

121

21

- 0.9900990109.0099009900,

0,0

Sxu

u

ll

l

=+=

=>

Step 6.

[image: image185.wmf](

)

(

)

3

1

3

2

3

11

11

3

22

22

4.5049504950

0.1784138810,

25.250

0.24507401240

0.00816913347.

300

I

UI

f

I

UI

f

fxf

ff

fxf

ff

m

m

-

-

===

--

-

-

===

--

Therefore, the new fuzzy matrix is
	
[image: image186.wmf]j

i

f

m

	
[image: image187.wmf]1

x

	
[image: image188.wmf]2

x

	
[image: image189.wmf]3

x

	
[image: image190.wmf]u

f

	
[image: image191.wmf]1

f

	0
	0.1980
	0.1784138810
	25.25

	
[image: image192.wmf]2

f

	0.8333
	0
	0.00816913347
	30

Step 7. Present the three solution to DM if he is certain that one of them is the best solution of the problem (not only preferred regarding the other two), stop. Else, ask DM whether he prefers one solution over the two solutions. Suppose that he would not, and his least preferred solution would be solution 2. This solution is then replaced by solution 3 return to Step 3.

The new pay-off table is
	
	
[image: image193.wmf]1

f

	
[image: image194.wmf]2

f

	
[image: image195.wmf]1

f

	4.504950495
	5

	
[image: image196.wmf]2

f

	0.2450740124
	0

By using relation (3) we obtain the compromise weights

[image: image197.wmf]1

0.2487562190

l

=

 and
[image: image198.wmf]2

0.7512437810

l

=

.

We note that these weights are out of the range of parameters which were defined in the above set
[image: image199.wmf](

)

3

Sx

so we must have the next solution.

The new composite membership function is

[image: image200.wmf](

)

(

)

3

2

2

1212

0.24875621900.7512437810

minmin5

25.2530

f

xxxxx

m

ìü

éù

éù

=++-+

íý

ëû

ëû

îþ

Subject to
[image: image201.wmf]22

12

25,

xx

+£

[image: image202.wmf]12

0, 0.

xx

³³

Which solution is

[image: image203.wmf](

)

(

)

(

)

333

12

4.80329159,0,4.803292,0.0386942.

xfxfx

===

, the corresponding stability set of the first kind is

[image: image204.wmf](

)

{

}

3

1212

1

-0.393568299.60643180,0,

0

Sxu

u

lll

=+==

>

We have the corresponding membership function in the form

[image: image205.wmf]33

12

0.1902293698,0.00128906658

ff

mm

==

.
Therefore the fuzzy matrix is
	
[image: image206.wmf]j

i

f

m

	
[image: image207.wmf]1

x

	
[image: image208.wmf]2

x

	
[image: image209.wmf]3

x

	
[image: image210.wmf]u

f

	
[image: image211.wmf]1

f

	0.17841388
	0.1980
	01902293698
	25.25

	
[image: image212.wmf]2

f

	0.0081691334
	0
	0.001289806658
	30

Suppose the DM would prefer the new solution over these solutions. Go to Step 8.

Step 8. Stop. The best compromise solution of this problem would be

[image: image213.wmf](

)

(

)

(

)

4.80329158725595917,0,

4.803291587,0.03869419974,

0.1902293698,0.001289806658.

f

x

f

m

=

=

=

7. Conclusion
An interactive stability compromise programming method, using a fuzzy approach and a pay-off table. In this method, no prior information is required from the DM and the compromise weights of the objective functions are determined from the pay-off table and fuzzy matrix. The method does not require significantly more data than pure nonlinear programming and the scale of multi-objective problem by using substituting the objective functions by the membership function and to obtain compromise weights by the grades of membership of the current vectors in each iteration in the "close ideal" fuzzy set.
The proposed algorithm programmed by using Maple program.
* Corresponding author.

Mathematics department, Faculty of Science, Tanta University

 E-mail address: mohd60_371@hotmail.com

 E-mail address: nooha_moh@yahoo.com

8. Reference
1- Chankong, V. and Haimes, Y. Y., "Multiobjective Decision Making Theory and Methodology". Elsevier Science, New York, 1983.

2- El-Sayed, H. M. "A Unified Interactive Approach For Solving Multiple-Objective Nonlinear Programming and Computer Code ", Proceedings of the first international conference on operations research and its applications, Cairo 1994 .

3- Evren, R. "Interactive compromise programming", Journal of the Operational Research Society 38 (2) (1987) 163-172.

4- Geoffrion, A. , Dyer, J. and Finbred, A. "An interactive approach for multi-criteria optimization with an application to the operation of an academic department", Management Science 19 (1972) 357-368.

5- Ignizeo, J. "Goal Programming and Extensions", Heath, Lexington, MA, 1976.

6- Kassem, M. "Interactive Stability of Multiobjective Nonlinear Programming Problems with Fuzzy Parameters in the Constraints", Fuzzy Sets and Systems 73 (1995) 235-243.

7- Kassem, M. "Interactive Stability of Vector Optimization Problems", European Journal of Operational Research 134 (2001) 616-622.

8- Lee, S. "Goal Programming for decision Analysis", Auerbach, Philadelphia, PA, 1972.

9- Osman, M. and El-Benna, A. "stability of multiobjective nonlinear programming problems with fuzzy parameters", Mathematics and Computer Simulation 35 (1993) 321-326.

10- Zeleny, M. "Multiple Criteria Decision Making", McGraw-Hill, New York, 1982.

9. Appendix

A maple program for solving multi-objective nonlinear programming (MONLP) problems and stability of this solution.
> restart: with(Optimization): with(Maplets[Elements]): with(Groebner):
> maplo:=Maplet(["Enter The Type of The Problem", [Button("Minimize",Shutdown("Minimize")),Button("Maximize",Shutdown("Maximize"))]]):

d:=Maplets[Display](maplo):dm:=parse(d);

ma := Maplet([["Enter No of Vector Spaces", TextField['TF']()],

[Button("ok",Shutdown(['TF']))]]):

n1:=Maplets[Display](ma):n:=parse(n1[1]);

q1:="a":i:=0:

while(q1="a") do

i:=i+1:

maplet := Maplet([["Enter an Objective function ", TextField[TF1]()],[Button['b']("ok",Shutdown([TF1]))]]):

t[i]:=Maplets[Display](maplet);

maplet2 := Maplet([[Label("Enter Another objective function?:")],

[Button['B1']("Ok",Shutdown("a"))],
[Button['B2']("No",Shutdown())]]):

q1:= Maplets[Display](maplet2):

end do:
> m:=i;
> for i from 1 to m do

f[i]:=parse(t[i][1]);

end do;
> q2:="a":i:=0:

while(q2="a")do

i:=i+1:

mapl1 := Maplet([["Enter Your Constraints", TextField[TF1]()],

[Button['b']("ok",Shutdown([TF1]))]]):

t1[i]:=Maplets[Display](mapl1);

mapl2 := Maplet([

[Label("Enter Another Constraint?: ")],

[Button['B1']("Ok", Shutdown("a"))],[Button['B2']("No", Shutdown())]]):

q2:= Maplets[Display](mapl2):

end do:
> k:=i;
> for i from 1 to k do

g[i]:=parse(t1[i][1]);

end do;
> for i from 1 to m do

for j from 1 to k do
> Q[i]:=Maximize(f[i], {g[j]}, assume=nonnegative); P[i]:=Minimize(f[i], {g[j]}, assume=nonnegative);
> end do;Q[i];P[i];end do;
> for i from 1 to m do

for j from 2 to m+1 do
> R1[i,j]:=rhs(Q[i][2][j-1]);
> # Minimization.
> S1[i,j]:=rhs(P[i][2][j-1]);end do;

end do;

> nnn:=proc(R1,S1,Q,P,f,g,n,m,k,MU1)

local R,i,j,K,MUf,A,alpha,FN,MuF,mx,f1,f2,f3,f4,f5,f6, maplet3:

global S,Mu,Lamda,Z,eq,ss,eq1,rr,su1,su2,lam, alph,kk,UU,U:

for i from 1 to m do
> # Maximization.

R[i,1]:=Q[i][1];
> # Minimization.
> S[i,1]:=P[i][1];

for j from 2 to m+1 do

R[i,j]:=R1[i,j];

S[i,j]:=S1[i,j];
end do: end do:
> Z:=Matrix(1..m,1..m+1):
> for i from 1 to m do

for j from 1 to m do

f5[i]:=f[i]:f4[i]:=f[i]:

if i=j then

kk:=1:

while(kk<=m) do

f1[i]:=subs(x[kk]=S[i,kk+1],f5[i]):

f5[i]:=f1[i]:kk:=kk+1:

end do:

Z[i,i]:=f5[i]:

else

kk:=1:

while(kk<=m) do

f2[i]:=subs(x[kk]=S[j,kk+1],f4[i]):

f4[i]:=f2[i]:kk:=kk+1:

end do:

Z[i,j]:=f4[i]:

end if:end do;

end do;Z;

for i from 1 to m do
> MUf[i]:=(f[i]-S[i,1])/(R[i,1]-S[i,1]):
> end do;

Mu:=Matrix(1..m,1..m+2):
> for i from 1 to m do
> for j from 1 to m do
> Mu[i,j]:=(Z[i,j]-S[i,1])/(R[i,1]-S[i,1]);end do;
> Mu[i,m+1]:=R[i,1];
> end do: Mu;
> mx:=Array(1..m):

for i from 1 to m do

mx[i]:=Z[i,1];

for j from 1 to m do

if (mx[i]<Z[i,j]) then mx[i]:=Z[i,j]; end if;

end do; end do; mx;

Lamda:=Array(1..m):

A:=Array(1..m):for i from 1 to m do
> A[i]:=mx[i]-Z[i,i];
> end do;
> alpha:=ln(abs(add((A[i]/A[m]),i=1..m)))/(A[m]-A[m-1]);
> for i from 1 to m do
> Lamda[i]:=exp(alpha*A[i])/add(exp(alpha*A[k1]),k1=1..m);
> end do;
> add(Lamda[i],i=1..m);
> FN:=add(Lamda[i]*MUf[i],i=1..m);
> for i from 1 to k do

MuF:=dm(FN, {g[k]}, assume=nonnegative);

end do:
> for j from 2 to n+1 do

S[m+1,j]:= rhs(MuF[2][j-1]); end do;

lam:=Vector(m,symbol=la):UU:=Vector(k,symbol=U):
> for alph from 1 to n do

su1:=add(diff(f[i],x[alph])*lam[i],i=1..m);

su2:=add(diff(lhs(g[j]),x[alph])*UU[j],j=1..k);

> eq[alph]:=su1+su2;

end do:
> for i from 1 to m do
> j:=1:

f6[i]:=f[i]:

while(j<=m) do

f3[i]:=subs(x[j]=S[m+1,j+1],f6[i]);

f6[i]:=f3[i]:j:=j+1:

end do:

Z[i,m+1]:=f6[i];
> end do;Z;
> for i from 1 to m do
> Mu[i,m+2]:=Mu[i,m+1];

Mu[i,m+1]:=(Z[i,m+1]-S[i,1])/(R[i,1]-S[i,1]);
> end do:MU1:=print("Mu=",Mu);#eq1:=print("eq=",eq);

end proc:
> nnn(R1,S1,Q,P,f,g,n,m,k,MU1);

RS:=Array(1..n):RS1:=Array(1..n):

for alph from 1 to n do

rr1:=eq[alph]:rr11:=eq[alph]: j:=1:

while(j<=m) do

rr:=subs([la[j]=Lamda[j],x[j]=S[m+1,j+1]],rr1):

r:=subs([x[j]=S[m+1,j+1]],rr11):

rr1:=rr: rr11:=r: j:=j+1:

end do:RS[alph]:=rr1;

RS1[alph]:=rr11;

end do:RS1;#RS;

syst:= [seq(RS[alph],alph=1..n)];
> var:=[seq(U[i],i=1..k)];

bs:=0;

printlevel :=4:

if IsProper(syst)=true then

B:=solve(syst,var);

for i from 1 to k do

if rhs(B[1][i])<0 then bs:=bs+1 end if:

end do:

if bs>=1 then "not stable" else "stable" end if;

else

"System is not stable" ;

 end if;

> maplet3 := Maplet([["agree these values?"],

[Button['q']("&OK", Shutdown("yes")), Button['q1']("&No",Shutdown("No"))]]):

ss:=Maplets[Display](maplet3):

for i from 2 to n+1 do

print("x",m+1,"=",S[m+1,i]);end do;print("Pay-Table=",Z);print("Lamda=", Lamda);

> while ss="No" do

mapl1:=Maplet([["Enter the no of x you want to replace with",TextField['TF']()],[Button("ok",Shutdown(['TF']))]]):

d1:=Maplets[Display](mapl1):

d2:=parse(d1[1]):

unassign('ss');unassign('Mu');unassign('Lamda');unassign('Z');unassign('eq');unassign('MU1');
> for i from 1 to m do
> R1[d2,i+1]:=S[m+1,i+1];
> S1[d2,i+1]:=S[m+1,i+1];

for j from 1 to d2-1 do

S1[j,i+1]:=S[j,i+1];

end do;

for j from d2+1 to m do

S1[j,i+1]:=S[j,i+1];

end do;

end do;
> nnn(R1,S1,Q,P,f,g,n,m,k,MU1);
> maplet3 := Maplet([["agree these values?"],

[Button['q']("&OK", Shutdown("yes")), Button['q1']("&No",Shutdown("No"))]]):

ss:=Maplets[Display](maplet3):
> end do:

RS:=Array(1..n):RS1:=Array(1..n):

for alph from 1 to n do

rr1:=eq[alph]:rr11:=eq[alph]:

j:=1:

while(j<=m) do

rr:=subs([la[j]=Lamda[j],x[j]=S[m+1,j+1]],rr1):

r:=subs([x[j]=S[m+1,j+1]],rr11):

rr1:=rr: rr11:=r: j:=j+1:

end do:RS[alph]:=rr1;

RS1[alph]:=rr11;

end do:RS1;#RS;

syst:= [seq(RS[i],i=1..n)]:
> var:=[seq(U[i],i=1..k)]:

bs:=0;
> if IsProper(syst)=true then

B:=solve(syst,var);

for i from 1 to k do

if rhs(B[1][i])<0 then bs:=bs+1 end if:

end do:

if bs>=1 then "not stable" else "stable" end if;

else

"System is not stable" ;

 end if;

> if ss="yes" then

mapl4:=Maplet([["Which one you prefere, x(",TextField['TF'](),")"],[Button("ok",Shutdown(['TF']))]]):

dd:=Maplets[Display](mapl4):

d3:=parse(dd[1]):
> end if:
> for i from 1 to m do
> zz[i]:=subs({x[1]=S[d3,2],x[2]=S[d3,3]},f[i]);
> l:=d3;
> end do:

print("Mu=",Mu);
> for i from 1 to m do
> print("x=",S[l,i+1]);end do:

for i from 1 to m do

print("fmin=",zz[i]);
> end do;

for i from 1 to m do
> print("Mu=",Mu[i,l]);
> end do;print("Pay-Table=",Z);print("Lamda=",Lamda);
12/12/2010

1
http://www.americanscience.org

 editor@americanscience.org
PAGE
222
http://www.americanscience.org

 editor@americanscience.org

_1347565806.unknown

_1347645652.unknown

_1347647650.unknown

_1348332167.unknown

_1349973179.unknown

_1349973297.unknown

_1349973707.unknown

_1351192420.unknown

_1351192642.unknown

_1349973761.unknown

_1349973812.unknown

_1349973500.unknown

_1349973524.unknown

_1349973458.unknown

_1349973225.unknown

_1349973251.unknown

_1349973207.unknown

_1348851800.unknown

_1349287663.unknown

_1349972956.unknown

_1349469170.unknown

_1348851821.unknown

_1348851848.unknown

_1349287649.unknown

_1348851831.unknown

_1348851807.unknown

_1348821457.unknown

_1348851789.unknown

_1348818007.unknown

_1347649224.unknown

_1347649513.unknown

_1347649798.unknown

_1348331841.unknown

_1348331848.unknown

_1347650271.unknown

_1347735139.unknown

_1347649530.unknown

_1347649278.unknown

_1347649454.unknown

_1347649253.unknown

_1347648901.unknown

_1347648972.unknown

_1347649199.unknown

_1347648917.unknown

_1347648193.unknown

_1347648582.unknown

_1347647684.unknown

_1347646751.unknown

_1347647361.unknown

_1347647507.unknown

_1347647627.unknown

_1347647429.unknown

_1347646846.unknown

_1347647348.unknown

_1347646815.unknown

_1347645934.unknown

_1347646276.unknown

_1347646418.unknown

_1347645992.unknown

_1347645827.unknown

_1347645876.unknown

_1347645694.unknown

_1347566164.unknown

_1347566628.unknown

_1347566689.unknown

_1347567827.unknown

_1347568734.unknown

_1347645593.unknown

_1347567844.unknown

_1347568532.unknown

_1347567712.unknown

_1347567719.unknown

_1347566696.unknown

_1347566651.unknown

_1347566675.unknown

_1347566640.unknown

_1347566562.unknown

_1347566597.unknown

_1347566621.unknown

_1347566589.unknown

_1347566435.unknown

_1347566451.unknown

_1347566327.unknown

_1347565860.unknown

_1347566107.unknown

_1347566149.unknown

_1347566158.unknown

_1347566113.unknown

_1347565893.unknown

_1347565969.unknown

_1347565879.unknown

_1347565834.unknown

_1347565848.unknown

_1347565854.unknown

_1347565842.unknown

_1347565820.unknown

_1347565827.unknown

_1347565813.unknown

_1347563463.unknown

_1347564339.unknown

_1347565728.unknown

_1347565780.unknown

_1347565793.unknown

_1347565800.unknown

_1347565786.unknown

_1347565750.unknown

_1347565767.unknown

_1347565736.unknown

_1347565517.unknown

_1347565705.unknown

_1347565721.unknown

_1347565591.unknown

_1347564591.unknown

_1347564615.unknown

_1347564627.unknown

_1347565394.unknown

_1347565417.unknown

_1347564634.unknown

_1347564622.unknown

_1347564603.unknown

_1347564609.unknown

_1347564597.unknown

_1347564482.unknown

_1347564578.unknown

_1347564473.unknown

_1347564130.unknown

_1347564310.unknown

_1347564325.unknown

_1347564332.unknown

_1347564316.unknown

_1347564132.unknown

_1347564302.unknown

_1347564131.unknown

_1347564043.unknown

_1347564128.unknown

_1347564129.unknown

_1347564126.unknown

_1347564127.unknown

_1347564053.unknown

_1347563789.unknown

_1347563970.unknown

_1347563488.unknown

_1347563534.unknown

_1347563646.unknown

_1347563656.unknown

_1347563633.unknown

_1347563516.unknown

_1347563469.unknown

_1347563174.unknown

_1347563283.unknown

_1347563339.unknown

_1347563379.unknown

_1347563399.unknown

_1347563432.unknown

_1347563441.unknown

_1347563405.unknown

_1347563386.unknown

_1347563367.unknown

_1347563373.unknown

_1347563353.unknown

_1347563360.unknown

_1347563346.unknown

_1347563308.unknown

_1347563325.unknown

_1347563333.unknown

_1347563316.unknown

_1347563296.unknown

_1347563302.unknown

_1347563290.unknown

_1347563224.unknown

_1347563266.unknown

_1347563277.unknown

_1347563259.unknown

_1347563240.unknown

_1347563187.unknown

_1347563217.unknown

_1347563182.unknown

_1344082428.unknown

_1347563091.unknown

_1347563115.unknown

_1347563121.unknown

_1347563134.unknown

_1347563109.unknown

_1344083072.unknown

_1344083087.unknown

_1344083100.unknown

_1344083149.unknown

_1347562665.unknown

_1344083106.unknown

_1344083092.unknown

_1344083081.unknown

_1344083029.unknown

_1344083036.unknown

_1344082551.unknown

_1344081925.unknown

_1344082119.unknown

_1344082381.unknown

_1344082387.unknown

_1344082369.unknown

_1344081931.unknown

_1039813912.unknown

_1324845176.unknown

_1325352780.unknown

_1325355381.unknown

_1325352779.unknown

_1324752406.unknown

_1039814297.unknown

_1039813585.unknown

_1039813883.unknown

_1039813240.unknown

