Organochlorine pesticides (OCPs) in Breast milk in Hong Kong-Review

Ningombam Linthoingambi Devi1, Qi Shihua1, Ishwar Chandra Yadav2, Chen Wei1

1State key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 388, Lumo road, Wuhan 430074, China.
2Center of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, Uttarpradesh, India
nldevi.cug@gmail.com

Abstract: Organochlorine pesticides (OCPs) contaminant in human breast milk research is an environmental indicator. Because, diet is a major factor that influences breast milk levels of persistent organic pollutants, with patterns in fish consumption playing a particularly significant role. In this paper review available data on levels of organochlorine pesticides (OCPs), polychlorinated dibenzodioxins (PCDDs) in breast milk of Hong Kong. After reviewing all available data demonstrated that organochlorine pesticides consumption in Hong Kong is decreasing according to time trend.

Key Words: Organochlorine pesticides; Human milk; Hong Kong

1.Introduction
Organochlorine pesticides (OCPs) with their high persistence in the environment accumulate in fatty foods and human adipose tissues. Contamination of human milk by organochlorine and other related compounds has been reported throughout the world (GEMS, 1998). During the recent decade, investigations on POPs pollution in the Asian regions and found that relatively high residue levels of DDTs and HCHs exist in foodstuffs (Kannan et al., 1997), mussels (Monirith et al., 2003) and avian species (Kunisue et al., 2003) from some developing countries and these contaminants are possibly in use for public health purposes even now. Among Asian developing countries, concentrations of DDTs in human breast milk from Vietnam, mainland China, Cambodia, and Malaysia were relatively higher than those from other countries (Kunisue et al., 2004).

Human milk, at the top of the food chain, represents the major route of elimination of OCPs by lactating women (Rogan et al., 1986; Sim and Neil, 1992; IARC, 1991) concluded that there is insufficient evidence in humans but sufficient evidence in experimental animals to classify DDT as a possible carcinogenic to humans. However, body loads of DDT also raise concerns about potential effects on developing infants and children because DDT transfers across the placenta from mother to fetus and exposure continues through breastfeeding after birth (Shen et al., 2007). It is well known that they are very dangerous if ingested as an overdose but there is also biological evidence that chronic low-grade exposure to these chemicals, which are very easily absorbed into the body through the skin and lungs, may have adverse effects on mental health (Zhang et al., 2009).

The rapid socio-economic development during the past two decades in China, especially the coastal area and the Pearl River Delta has given rise to severe economic, environmental and health problems. In 1983 use of DDT in agriculture was banned. However, high residue concentrations for both two substances still existed in sediments, soils, foods and human organisms (Liu et al., 2003). In addition, technical DDTs remain in use in some parts of China for Malaria control and as additives in anti-fouling paints for fishing ships (Li et al., 2007). Organochlorine pesticide residues in animal tissues and other products are likely to occur from the accumulation of these lipophilic chemicals through the food chain and are closely associated with fats in the sample. In this paper review the sources of organochlorine in breast milk of Hong Kong and decrease level.

2.Usage of POP pesticides in China

Being one of the largest agricultural production country, China has been a major producer and consumer of pesticides, until its ban on production and agricultural use were enforced in 1983. China had been a significant producer and user of DDT since the 1950s. In Hong Kong Special-Administrative Region (SAR), DDT was banned from use on 31 December 1987, and currently can be traded only under permit (Wong et al., 2002). From 1979 to 1982, however, between 5032 and 5380 kg of DDT pesticide was imported into Hong Kong annually. Furthermore, there was a net gain of 736 tonnes of DDT between 1986 and 1988 in Hong Kong (Ip, 1990). DDT, HCH, toxaphene, HCB, chlordane, heptachlor, and mirex were produced in China. According to Stockholm Convention persistent organic pollutants (POPs) were banned in China and
Historically, there were about 60 POP pesticide-producing enterprises located in 18 provinces in China. The accumulated output of DDT, toxaphene, and HCB were 459,000, 20,660, and 79,278 MT, respectively, while the accumulated output of HCH was 141,366 MT during 1990-2003. In the 1980s, China set up the legal framework for controlling organochlorine pesticides, and the production and use of organochlorine pesticides for agriculture were banned. Presently, DDT and HCH can still be detected in air, water, sediments, field soil, grains, vegetables, fruits, meat, animals, and human tissue in many areas. Suggest that government of China could keep the view in the pesticides problems and find the alternative ways to make sustainable environment. Pesticides were destroying the ecosystem and it brings the climate change issue in China.

The total amount of pesticides demand in 2008 was 298,200 tons nearly same as 2007. The pesticide varieties with more than 10,000 tons demand amount all over China will include dichlorvos, acetochlor, copper sulfate, glyphosate, trichlorfon, disosultap etc, 5,000 to 10,000 tons varieties include phoxim, carbendazim, monosultap, butachlor, atrazine, omethoate, tiophanate-methyl, chlorpyrifos, 2,4-D butyl ester, dimethoate, acephate etc. In addition, the provinces with more than 20,000 tons of pesticide demand amount are Heilongjiang and Hunan, and the following provinces are ranging from 10,000 tons and 20,000 tons, like Guangdong, Yunan, Shandong, Henan, Anhui, Hubei, Hebei, Jiangsu, Liaoning, Guangxi, Fujian, Jiangxi, and Zhejiang.

Emission of Dioxin in Hong Kong

The current and future polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) inventory for Hong Kong is lower (Table 2) than that for other national inventories per head of population, owing to a generally low level of combustion and industrial activity, but more significantly to the fact that Hong Kong has adopted a PCDD/F emission limit of 0.1 ng I-TEQ m$^{-3}$ for all existing and proposed waste incineration facilities, in line with the best practice elsewhere.
Table 2: Estimated PCDD/F emissions to atmosphere from the HKSAR (1997-2007)

<table>
<thead>
<tr>
<th>Sources</th>
<th>Activity 1997</th>
<th>Inventory (1997, g I-TEQ)</th>
<th>Activity (2007)</th>
<th>Inventory (2007 g I-TEQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal combustion</td>
<td>6.1 MT</td>
<td>0.4-2.0</td>
<td>5.6 MT</td>
<td>0.3-1.8</td>
</tr>
<tr>
<td>Municipal soil waste</td>
<td>116,508 t</td>
<td>0.32</td>
<td>1000000</td>
<td>0.5</td>
</tr>
<tr>
<td>Clinker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical waste</td>
<td>3,650 t</td>
<td>0.4-1.8</td>
<td>5,290t</td>
<td>0.2</td>
</tr>
<tr>
<td>Diesel</td>
<td>2515MKm</td>
<td>0.002-0.03</td>
<td>2515MKm</td>
<td>0.002-0.03</td>
</tr>
</tbody>
</table>

Table 3: Comparison of dietary intake of POPs by the residents of Hong Kong and other urban locations.

<table>
<thead>
<tr>
<th>Location</th>
<th>Dietary intake (ng kg⁻¹ bw d⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DDT</td>
<td>HCB</td>
</tr>
<tr>
<td>Hong Kong, China</td>
<td>29.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Australia</td>
<td>7</td>
<td>4.67</td>
</tr>
<tr>
<td>China, Mainland</td>
<td>341</td>
<td>-----</td>
</tr>
<tr>
<td>Egypt</td>
<td>13,700</td>
<td>-----</td>
</tr>
<tr>
<td>Finland</td>
<td>26</td>
<td>-----</td>
</tr>
<tr>
<td>India</td>
<td>800</td>
<td>2.17</td>
</tr>
<tr>
<td>New Zealand</td>
<td>3</td>
<td>-----</td>
</tr>
<tr>
<td>Slovakia</td>
<td>95.8</td>
<td>3.75</td>
</tr>
<tr>
<td>Spain</td>
<td>20.3</td>
<td>17.2</td>
</tr>
<tr>
<td>Switzerland</td>
<td>28.3</td>
<td>18.3</td>
</tr>
<tr>
<td>Thailand</td>
<td>70</td>
<td>1.3</td>
</tr>
<tr>
<td>Netherlands</td>
<td>16.7</td>
<td>3.33</td>
</tr>
<tr>
<td>UK</td>
<td>50</td>
<td>-----</td>
</tr>
<tr>
<td>USA</td>
<td>26</td>
<td>0.5</td>
</tr>
<tr>
<td>Vietnam</td>
<td>320</td>
<td>1.7</td>
</tr>
</tbody>
</table>

The estimated dietary intake of HCB was found to be generally similar among residents of Hong Kong, other Asian countries/regions (Kannan et al., 1992), Australia (Miller et al., 2002; Kannan et al., 1995), the US (Herrera et al., 1996), the Netherlands (Brussard et al., 1996) and Slovakia (Prachar et al., 1996), but lower than the value reported in Spain or Switzerland (Herrera et al., 1996). Based on the few published data available for comparison, the level of local dietary PCBs exposure was found to be much lower than in other Asian countries (Kannan et al., 1992). The estimated dietary exposure of Hong Kong residents to dioxins/furans was generally comparable to the level reported in most European countries (Malisch, 1998), Canada and the U.S. (USEPA, 2001); slightly higher than the values recorded in Australia, New Zealand (Buckland et al., 1998) or the UK (FSA UK, 2003), but appreciably lower than that found in Norway and Spain (Jimenez et al., 1996).
3. Organochlorine pesticides (OCPs) in Human milk

DDT levels in Hong Kong breast milk

The DDT levels in breast milk from Hong Kong indicate a marked decline in DDT human body load in Hong Kong in the past thirty years, assuming reasonable comparability of assay results in different previous surveys (Ip, 1983; 1989). Human breast milk is a convenient medium for monitoring levels of lipophilic organochlorine compounds such as DDT, first because of obvious concern over exposure to the suckling infant, but also because it is easier to obtain than, for example, adipose tissue (Sim and Neil, 1992). The most direct concern with toxic compounds in breast milk, of course, relates to potential exposure to the infant. While breast-feeding is usually considered to have overwhelming advantages (Newman, 1995), there has been concern that breastfed infants in some areas could be exceeding recommended limits of various organochlorine compounds (Mitchell, 1997). Both \(p,p' \)-DDT and \(p,p' \)-DDE concentrations in breast milk in Hong Kong decreased over time. The ratio of \(p,p' \)-DDT to \(p,p' \)-DDE decreased from 0.38 in 1976 to 0.07 in 2002. This observation is consistent with a worldwide downward trend in DDT body load (Smith, 1999) and it was even suggested that the decline in average levels of DDT in breast milk in most countries was strongly correlated with the length of time since DDT restriction. However, the time trend in mainland China is not clear because there is only published data on the DDT body load in mainland China in recent years (Nakata et al., 2002; Kunisue et al., 2004). The level of DDT in human breast milk in Hong Kong was the second highest in the 1970s among 21 countries worldwide (Solomon and Weiss, 2002). The DDT produced and applied in south-east mainland China, where DDT had been extensively used, could also be an important source of exposure to Hong Kong residents. High levels of DDT in foodstuffs in Hong Kong have been reported (Ip, 1990). However, an apparent decreasing trend of organochlorine pesticides were observed in Hong Kong human milk 1980s further decrease was found in the (Hedley et al., 2010)(Figure 1). Lower levels of \(\alpha \)-HCH and \(\gamma \)-HCH were also found compared with the 1985 level (Ip and Philips, 1989).

![Figure 1. Time trend mean concentration (ng/g in fat) of OCP in breast milk in Hong Kong Review from (Ip, 1983, 1989; Hedley et al., 2010)](image)

Comparison of OCP in breast milk Hong Kong with other countries

To understand the magnitude of contamination in human breast milk in Hong Kong, OCPs were compared with inside the China (Wong et al., 2002; Kunisue et al., 2004) further compared with other countries (Cok et al., 1997; Waliszewski et al., 2001; Hooper et al., 1997; Harris et al., 1999) as shown in (Table 4).

Table 4. Domestic and international comparison of organochlorine concentrations in human breast milk

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>DDTs</th>
<th>HCHs</th>
<th>Unit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>1999</td>
<td>2900(^b)</td>
<td>950(^e)</td>
<td>ng/g lipid wt.</td>
<td>(Wong et al., 2002)</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>2001</td>
<td>-----</td>
<td>-----</td>
<td>TEQ pg/g fat</td>
<td>(Soochitram et al., 2003)</td>
</tr>
<tr>
<td>Guangzhou</td>
<td>2000</td>
<td>3220-5980</td>
<td>700-2600</td>
<td>ng/g fat</td>
<td>(Wong et al., 2002)</td>
</tr>
<tr>
<td>Dalian</td>
<td>2004</td>
<td>2100(^f)</td>
<td>1400(^c)</td>
<td>ng/g lipid wt.</td>
<td>(Kunisue et al., 2004)</td>
</tr>
<tr>
<td>Shenyang</td>
<td>2004</td>
<td>870(^a)</td>
<td>550(^c)</td>
<td>ng/g lipid wt.</td>
<td>(Kunisue et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developing and former socialist countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>1995-1996</td>
<td>2400(^b)</td>
<td>480(^c)</td>
<td>ng/g lipid wt.</td>
<td>(Cok et al., 1997)</td>
</tr>
<tr>
<td>Iran</td>
<td>1991</td>
<td>2000(^b)</td>
<td>600(^c)</td>
<td>ng/g lipid wt.</td>
<td>(Cok et al., 1997)</td>
</tr>
<tr>
<td>Mexico</td>
<td>1997-1998</td>
<td>4700(^c)</td>
<td>60(^c)</td>
<td>ng/g lipid wt.</td>
<td>(Waliszewski et al., 2001)</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>1994</td>
<td>2300(^a)</td>
<td>1300(^l)</td>
<td>ng/g lipid wt.</td>
<td>(Hooper et al., 1997)</td>
</tr>
<tr>
<td>Russia</td>
<td>1996</td>
<td>2000(^b)</td>
<td>560(^l)</td>
<td>ng/g lipid wt.</td>
<td>(Hansen et al., 1998)</td>
</tr>
</tbody>
</table>
Developed country | Year | Concentration | Unit | Reference
--- | --- | --- | --- | ---
Japan | 1998 | 290 | ng/g lipid wt. | (Konishi et al., 2001)
Sweden | 1997 | 170 | ng/g lipid wt. | (Noren et al., 2000)
Germany | 1995-1997 | 240 | ng/g lipid wt. | (Schade and Heinzow, 1998)
Canada | 1996 | 470 | ng/g lipid wt. | (Newsome and Ryan, 1999)
UK | 1997-1998 | 470 | ng/g lipid wt. | (Harris et al., 1999)

\(^a\) p,p′-DDE+ p,p′-DDT+ p,p′-DDD.
\(^b\) p,p′-DDE+ p,p′-DDT.
\(^c\) p,p′-DDE+ p,p′-DDT+ p,p′-DDD+ o,p′-DDT.
\(^d\) p,p′-DDE+ p,p′-DDT+ o,p′-DDT.
\(^e\) α-HCH+β-HCH+γ-HCH.
\(^f\) α-HCH+β-HCH only.
\(^g\) β-HCH only.
\(^h\) β-HCH+γ-HCH.
\(^i\) Total.

Concentrations of DDTs and HCHs in human breast milk from Dalian were similar to those from Hong Kong and Guangzhou, while those from Shenyang were somewhat lower. This indicates that the residents living closer to the costa in China have been exposed to relatively high levels of DDTs and HCHs. However, further study in Hong Kong human milk found to be lower concentration of OCPs consumption. It demonstrated that uses of pesticides in Hong Kong were lower and peoples were following the permissible limit according to world health organization. The developing country like Mexico concentration of DDT was higher than Hong Kong, further total HCHs concentration in Kazakhstan also higher than Hong Kong. Hence, organochlorine pesticides consumption in Hong Kong is decreasing due to time trend.

4. Conclusion

We have review the available data/information of organochlorine pesticides contamination in breast milk of Hong Kong, China. In 1976 concentration of β-HCH was very higher than γ-HCH, deildrin and HCB. Further, monitored in 1985 and 2002 demonstrated that organochlorine pesticides concentration in Hong Kong breast milk found to be must lower than before. In view of our observations suggest that further investigation on human exposure in organochlorine pesticides are needed to elucidate future pollution trends and to assess infant health risk.

Corresponding author:
Ningomabm Linthoingambi Devi
School of Environmental Science,
China University of Geosciences, Wuhan
E-mail: nldevi.cug@gmail.com

References
5. EPD, (2005) An inventory report of persistent organic pollutants (POPs) in the Hong Kong Special Administrative Region of China, Environmental Protection Department, the HKSAR Government.

49. USEPA, (2001) Exposure and human health reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds (Draft Final Report, EPA/600/P-00/001Bc), Exposure Assessment and Risk Characterisation Group, National Center for Environmental Assessment, Office of Research and Development Washington DC.

