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1. Introduction 

Recently heat-like models for physical 
problems have been caught much attention. These 
models can exactly describe some nonlinear 
phenomena, for example, the most celebrated Navier-
Stokes equations can be converted into various heat-
like equation in some special cases. We suppose the 
existence of imprecise parameters in heat-like 
equations with variable coefficients. Since fuzzy sets 
theory is a powerful tool for modeling imprecision 
and for processing vagueness in mathematical models 
(Buckly 1999, Buckly 2000, Chalco-Cano2008, 
Nieto 2006), therefore, the purpose of this paper is 
using VIM and the same strategy as in Buckley and 
Feuring (Buckly 1999) for solving heat-like 
equations with fuzzy parameters. 

The VIM (Abdou 2005, Shou 2008, 
Wazwaz 2004, Biazar  2007, Sadighi  2007, 
Abbasbandy 2009-64a, Abbasbandy 2009) gives 
rapid convergent successive approximations of the 
exact solution if such a solution exists without any 
restrictive assumption or transformation that may 
change the physical behavior of the problem. Very 
recently Allahviranloo et. al. (Allahviranloo 2009) 
discussed on the first order fuzzy differential 
equations by VIM. In this paper, we consider the 
iterative method for fuzzy heat-like equations in one 
and two dimensions with variable coefficients by 
VIM. 

The paper is organized as follows: in 
Section 2, we call some fundamental results on fuzzy 
numbers. In Section 3 and 4, fuzzy heat-like 
equations and the VIM are illustrated, respectively. In 
Section 5, the same strategy as in Buckley-Feuring is 
presented for two-dimensional fuzzy heat-like 
equation. Some examples in Section 6 illustrated and 
finally conclusions are given in Section 7. 
2. Preliminaries  

We place a bar over a capital letter to denote 

a fuzzy subset of nR . So, X  , K , C , etc. all 

represent fuzzy subsets of nR  for some n . We write 

)(t
A

µ , a number in [0,1] , for the membership 

function of A  evaluated at nt R∈ . Define BA ≤  

when )()( tt
BA

µµ ≤  for all t . An γ -cut of A  is 

always a closed and bounded interval that written 

][γA , is defined as })(|{ γµ ≥tt
A

, for 1<0 ≤γ . We 

separately specify [0]A  as the closure of the union of 

all the ][γA  for 1<0 ≤γ . Let E  shows a set of 

fuzzy numbers (Ma 1999). 
 We represent an arbitrary fuzzy number by 

an ordered pair of functions )](),([=][ 21 γγγ AAA , 

10 ≤≤ γ  which satisfy the following requirements   

     (a) )(1 γA  is a bounded left continuous       

           nondecreasing function over [0,1] ,  

     (b) )(2 γA  is a bounded left continuous non-   

           increasing function over [0,1] ,  

     (c) 10),()( 21 ≤≤≤ γγγ AA .  

   A fuzzy set ),,,(= 321 aaaA  

)<<( 321 aaa  is called triangular fuzzy number 

with peak (or center) 2a , left width 0>12 aa −  and 

right width 0>23 aa − , if its membership function 

has the following form  
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The support of A  is ],[ 31 aa . We will write: (1) 

0>A  if 0>1a , (2) 0≥A  if 01 ≥a , (3) 0<A  if 

0<3a ; and (4) 0≤A  if 03 ≤a . We adopt the 

general definition of a fuzzy number given in 
(Goetschel 1986). 
3. Fuzzy heat-like equations  

In this section, we consider the heat-like 
equations in one and two dimensions which can be 
written in the forms 
     (a) One-dimensional:  

),,,(=),()(),( kxtFxtUxpxtU xxt +         (1) 

     (b) Two-dimensional:  

),,,,(=),,()(

),,()(),,(

kyxtFyxtUyq

yxtUxpyxtU

yy

xxt ++
          (2) 

           or  

),,,,(=),,()(

),,()(),,(

kyxtFyxtUxp

yxtUyqyxtU

yy

xxt ++
          (3) 

subject to certain initial and boundary conditions. 
These initial and boundary conditions, in 

state two-dimensional, can come in a variety of forms 

such as 1=),(0, cyxU  or ),,(=),(0, 21 cyxgyxU  or 

),,,(=),,( 4321 ccyxgyxMU ,.... 

In this paper the method is applied for the 
heat-like equation (2). For Eqs. (1) and (3), it is 
similar to (2), so we will omit them. In following 
lines, components of Eq. (2) are enumerated:   

    •  ][0,= jj MI  are three intervals, which   

        1,2,3)=(0> jM j .  

    •  ),,,( kyxtF , ),,( yxtU , )(xp  and )( yq  will be  

        continuous functions for jj
Iyxt ∏∈

3

1=
),,( .  

    •  )(xp  and )( yq  have a finite number of roots  

         for each 32),( IIyx ×∈ .  

    •  ),,(= 1 nkkk Κ  and ),,(= 1 mccc Κ  are vectors  

        of constants with jk  in interval jJ  and rc  in     

         interval rL .  

 Assume the Eq. (2) has a solution  
 ),,,,,(=),,( ckyxtGyxtU                        (4) 

 for continuous 
G ( ),,,,()(),,,,()(),,,,( ckyxtGyqckyxtGxpckyxtG yyxxt ++  is 

continuous for LcJkIyxt jj
∈∈∈∏ ,,),,(

3

1=
) with 

jj
Iyxt ∏∈

3

1=
),,( , j

n

j
JJk ∏∈

1=
=  and 

r
m

r
LLc ∏∈

1=
= . 

Now suppose the value of the jk  and rc  

are imprecise. We will model this uncertainty by 

substitute triangular fuzzy numbers for the jk  and 

rc . If we fuzzify Eq. (2), then we obtain the fuzzy 

heat-like equation. Using the extension principle we 

compute F  from F  where ),,,( KyxtF  has 

),,(= 1 nKKK Κ  for jK  a triangular fuzzy number 

in jJ , nj ≤≤1 . The function U  become U , where 

EIU jj
→∏

3

1=
: . That is, ),,( yxtU  is a fuzzy 

number. The fuzzy heat-like equation is  

),,,,(=)()( KyxtFUyqUxpU yyxxt ++               ( 5) 

subject to certain initial and boundary conditions. 
The initial and boundary conditions can be of the 

form 1=),(0, CyxU  or ),,(=),(0, 21 CyxgyxU  or 

),,,(=),,( 4321 CCyxgyxMU ,.... The jg  is the 

extension principle of jg . We wish to solve the 

problem given in Eq. (5). Finally, we fuzzify G  in 

Eq. (4). Let ),,,,(=),,( CKyxtGyxtZ  where Z  is 

computed using the extension principle and is a fuzzy 
solution. In Section 5, we will discuss solution with 
the same strategy as Buckley-Feuring for fuzzy heat-

like equation. Let ][=][
1=

γγ j
n

j
KK ∏  and 

][=][
1=

γγ r
m

r
CC ∏ . 

4. The variational iteration method 
To illustrate the basic idea of the VIM we 

consider the following model PDE  
),,,,(= kyxtFNUULULUL yxt +++  (6) 

 where tL , xL  and yL  are linear operators of t , x  

and y , respectively, and N  is a nonlinear operator, 

also ),,,( kyxtF  is the source non-homogeneous 

term. According to the VIM, we can express the 
following correction functional in t -direction as 
follows  

,}
~

)({

),,(=),,(

0

1

dsFUNLLUL

yxtUyxtU

nyxns

t
nn

−+++

+

∫
+

λ
    (7) 

 where λ  is general Lagrange multiplier (He 2004), 
which can be identified optimally via the variational 

theory (He 2006, Wazwaz 2007), and nU
~

 is a 

restricted variation which means 0=
~

nUδ . By this 

method, we determine first the Lagrange multiplier 
λ  which will be identified optimally. The successive 

approximations 1+nU , 0≥n , of the solution U  will 

be readily obtained by suitable choice of trial 

function 0U . Consequently, the solution is given as  

).,,(lim=),,( yxtUyxtU n
n ∞→

          (8) 
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 According to the VIM, we construct a correction 
functional for Eq. (2) in the form  

 

,})
~

)(()
~

)((){(

)(),,(=),,(
01

dsFUyqUxpU

syxtUyxtU

yynxxnsn

t

nn

−++

+ ∫+ λ
         (9) 

 where 0≥n  and λ  is a Lagrange multiplier. 

Making Eq. (9) stationary with respect to nU , we 

have  

 
0,=|)(1

0,=)(

=tss

s

λ

λ

+

′
 

hence,the Lagrange multiplier is 1= −λ . Submitting 
the results into Eq. (9) leads to the following iteration 
formula  

 

.}))(())((){(

),,(=),,(

0

1

dsFUyqUxpU

yxtUyxtU

yynxxnsn

t
nn

−++

−

∫
+

    (10) 

 Iteration formula start with an initial approximation, 
for example ),(0,=),,(0 yxUyxtU . Also the VIM 

used for system of linear and nonlinear partial 
differential equations (Wazwaz 2007) which handled 
in obtain Seikkala solution. 
 
5. Buckley-Feuring Solution (BFS) and Seikkala 
Solution (SS) 

In (Buckly 1990), Buckley-Feuring present 
the BFS. For all yxt ,,  and γ ,  

)],,,,(),,,,([=])[,,( 21 γγγ yxtzyxtzyxtZ (11) 

 and  

)],,,,(),,,,([=])[,,,( 21 γγγ yxtFyxtFKyxtF (12) 

 that by definition  

]},[],[|),,,,({min

=),,,(1

γγ

γ

CcKkckyxtG

yxtz

∈∈
(13) 

  

]},[],[|),,,,({max

=),,,(2

γγ

γ

CcKkckyxtG

yxtz

∈∈
 (14) 

 and  

]},[|),,,({min=),,,(1 γγ KkkyxtFyxtF ∈    (15) 

  

]}.[|),,,({max=),,,(2 γγ KkkyxtFyxtF ∈   (16) 

 

Assume that 0>)(xp , 0>)(yq  and the 

),,,( γyxtzi , 1,2=i , have continuous partial so that 

yyixxiti zyqzxpz ))(())(()( ++  is continuous for all 

jj
Iyxt ∏∈

3

1=
),,(  and all γ . Define  

],))(())(()(

,))(())(()(=),,,(

222

111

yyxxt

yyxxt

zyqzxpz

zyqzxpzyxt

++

++Γ γ
 (17) 

 for all jj
Iyxt ∏∈

3

1=
),,(  and all γ . If, for each fixed 

jj
Iyxt ∏∈

3

1=
),,( , ),,,( γyxtΓ  defines the γ -cut of a 

fuzzy number, then will be said that ),,( yxtZ  is 

differentiable and is written  

),,,,(=][)(][)(][ γγγγ yxtZyqZxpZ yyxxt Γ++   (18) 

 for all jj
Iyxt ∏∈

3

1=
),,(  and all γ . 

Sufficient conditions for ),,,( γyxtΓ  to 

define γ -cuts of a fuzzy number are [14]:    

(i) yyxxt yxtzyqyxtzxpyxtz )),,,()(()),,,()(()),,,(( 111 γγγ ++  

is an increasing function of γ  for each 

jj
Iyxt ∏∈

3

1=
),,( ; 

 (ii) yyxxt yxtzyqyxtzxpyxtz )),,,()(()),,,()(()),,,(( 222 γγγ ++  

is a decreasing function of γ  for each 

jj
Iyxt ∏∈

3

1=
),,( ; and 

(iii) ≤++ yyxxt yxtzyqyxtzxpyxtz ,1)),,()((,1)),,()((,1)),,(( 111  

yyxxt yxtzyqyxtzxpyxtz ,1)),,()((,1)),,()((,1)),,(( 222 ++   

for jj
Iyxt ∏∈

3

1=
),,( . 

 Now can suppose that the ),,,( γyxtzi  have 

continuous partial so  

,))(())(()( yyixxiti zyqzxpz ++  

is continuous on [0,1]
3

1=
×∏ jj

I , 1,2=i . Hence, if 

conditions (i)-(iii) above hold, ),,( yxtZ  is 

differentiable. 

For ),,( yxtZ  to be a BFS of the fuzzy heat-

like equation we need: (a) ),,( yxtZ  differentiable; 

(b) Eq. (5) holds for ),,(=),,( yxtZyxtU ; and (c) 

),,( yxtZ  satisfies the initial and boundary 

conditions. Since no exist specified any particular 
initial and boundary conditions then only is checked 
if Eq. (5) holds. 

),,( yxtZ  is a BFS (without the initial and 

boundary conditions) if ),,( yxtZ  is differentiable 

and  

),,,,(=)()( KyxtFZyqZxpZ yyxxt ++           (19) 

 or the following equations must hold  

),,,,(=))(())(()( 1111 γyxtFzyqzxpz yyxxt ++   (20) 

 ),,,,(=))(())(()( 2222 γyxtFzyqzxpz yyxxt ++ (21) 

 for all jj
Iyxt ∏∈

3

1=
),,(  and all γ . 

Now we will present a sufficient condition 
for the BFS to exist such as Buckley and Feuring. 
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Since there are such a variety of possible initial and 
boundary conditions, hence we will omit them from 
the following Theorem. One must separately check 
out the initial and boundary conditions. So, we will 
omit the constants mrcr ≤≤,1 , from the problem. 

Therefore, Eq. (4) becomes ),,,(=),,( kyxtGyxtU , 

so ),,,(=),,( KyxtGyxtZ . 

Theorem 1. Suppose ),,( yxtZ  is differentiable.   

  (a) If  

,),(0,>)(0,>)( 32 IIyxyqxp ×∈         (22) 

 and  

0,>
jj k

F

k

G

∂

∂

∂

∂
                                     (23) 

 for nj ,1,= Κ , Then BFS= ),,( yxtZ .  

    (b) If relations (22) does not hold or 
relation (23) does not hold for some j , then 

),,( yxtZ  is not a BFS.  

 Proof. It is similar to proof of Theorem 1 in (Buckly 
1999).  

Therefore, if ),,( yxtZ  is a BFS and it 

satisfies the initial and boundary conditions we will 

say that ),,( yxtZ  is a BFS satisfying the initial and 

boundary conditions. If ),,( yxtZ  is not a BFS, then 

we will consider the SS. Now let us define the SS 
(Seikkala  1987). Let  

)].,,,(),,,,([=])[,,( 21 γγγ yxtuyxtuyxtU  

For example suppose 0>)(xp  and 0<)(yq , so 

consider the system of heat-like equations  

),,,,(=))(())(()( 1211 γyxtFuyquxpu yyxxt ++ (24) 

),,,,(=))(())(()( 2122 γyxtFuyquxpu yyxxt ++ (25) 

 for all jj
Iyxt ∏∈

3

1=
),,(  and all [0,1]∈γ . We 

append to Eqs. (24) and (25) any initial and boundary 

conditions. For example, if it was 1=),(0, CyxU  

then we add 

),(=),,(0, 111 γγ cyxu                        (26) 

),(=),,(0, 122 γγ cyxu                                     (27) 

 where )](),([=][ 12111 γγγ ccC . Let 

1,2)=(),,,,( iyxtui γ  solve Eqs. (24) and (25), plus 

initial and boundary conditions. If  

)],,,,(),,,,([ 21 γγ yxtuyxtu         (28) 

 defines the γ -cut of a fuzzy number, for all 

jj
Iyxt ∏∈

3

1=
),,( , then ),,( yxtU  is the SS. 

We will say that derivative condition holds 
for fuzzy heat-like equation when Eqs. (22) and (23) 
are true.  

Theorem 2.  (1) If BFS= ),,( yxtZ , then 

SS= ),,( yxtZ . (2) If SS= ),,( yxtU  and the 

derivative condition holds, then BFS= ),,( yxtU . 

Proof. (1) Follows from the definition of BFS and SS. 

(2) If SS= ),,( yxtU  then the Seikkala derivative 

(Buckly 2000) exists and since the derivative 
condition holds, therefore, Eqs. following holds  

),,,,(=))(())(()( 1111 γyxtFuyquxpu yyxxt ++   (29) 

 ).,,,(=))(())(()( 2222 γyxtFuyquxpu yyxxt ++  (30) 

 Also suppose one kk j =  and 0<
k

G

∂

∂
, 0<

k

F

∂

∂
 (the 

other cases are similar and are omitted). 
We see  

)),(,,,(=),,,( 21 γγ kyxtGyxtz    (31) 

)),(,,,(=),,,( 12 γγ kyxtGyxtz     (32) 

)),(,,,(=),,,( 21 γγ kyxtFyxtF    (33) 

)).(,,,(=),,,( 12 γγ kyxtFyxtF  (34) 

 Now look at Eqs. (20) and (21) also Eqs. (13) and 
(14), implies that  

),,,,(=))(,,,(=),,,( 121 γγγ yxtzkyxtGyxtu             

).,,,(=))(,,,(=),,,( 212 γγγ yxtzkyxtGyxtu  

Therefore BFS= ),,( yxtU .  

Remark 1. The Theorem 1 hold for Eq. (3) and the 
proof is similar to Theorem 1 in (Buckly 1999).  

Lemma 1. Consider Eq. (1). Assume ),( xtZ  is 

differentiable.   
 (a) If  

,0,>)( 2Ixxp ∈                        (35) 

 and  

0,>
jj k

F

k

G

∂

∂

∂

∂
                              (36) 

 for nj ,1,= Κ , Then BFS= ),( xtZ .  

 (b) If relation (35) does not hold or relation (36) does 

not hold for some j , then ),( xtZ  is not a BFS. 

Proof. It is similar to Theorem 1 in (Buckly 1999). 
6. Examples 

 We consider the following illustrating 
examples.   
Example 1. We first consider the one-dimensional 
initial value problem  

,=
2

1 2 kUxU xxt +                        (37) 

 subject to the initial condition 2=)(0, cxxU  and 

)(0,],(0, 21 MxMt ∈∈ . Let ][0, Jk ∈  and ][0, Lc ∈  

are constants. According to the VIM, a correct 
functional for Eq. (37) from Eq. (10) can be 
constructed as follows  
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.})),((
2

1
)),({(

),(=),(

2

0

1

dskxsUxxsU

xtUxtU

xxnsn

t

nn

−+

−

∫

+

 

Beginning with an initial approximation 
2

0 =)(0,=),( cxxUxtU , we can obtain the following 

successive approximations  

),
3!2!

(1=),(

),
2

(1=),(

),(1=),(

32
2

3

2
2

2

2
1

tt
tcxktxtU

t
tcxktxtU

tcxktxtU

−+−+

+−+

−+

 

and  

1.),
!

1)(
2!

(1

=),(
2

2 ≥−+++−+ n
n

tt
tcxkt

xtU
n

n

n

Λ
 

The VIM admits the use of  

 ),,(lim=),( xtUxtU n
n ∞→

 

which gives the exact solution  

.=),( 2 tecxktxtU −+  

Now we fuzzify kkxtF =),,(  and 
tecxktckxtG −+ 2=),,,( . Clearly KKxtF =),,(  so 

that )(=),,( 11 γγ kxtF  and )(=),,( 22 γγ kxtF . Also 
texCtKCKxtG −+ 2=),,,( , therefore,  

,)()(=),,( 2 t
iii exctkxtz −+ γγγ  

for 1,2=i , )](),([=][ 21 γγγ kkK  and 

)](),([=][ 21 γγγ ccC . ),( xtZ  is differentiable 

because 1,2=),(=)(
2

1
)( 2 ikzxz ixxiti γ+ . That is, 

KZxZ xxt =
2

1 2+ , a fuzzy number. Since 0>)(xp , 

0>
k

G

∂

∂
 and 0>

k

F

∂

∂
, Lemma (5) implies the result 

that ),( xtZ  is a BFS. We easily see that  

 ,)(=),(0, 2xcxz ii γγ  

for 1,2=i , so ),( xtZ  also satisfies the initial 

condition. The BFS that satisfies the initial condition 
may be written as  

 ,=),( 2 texCtKxtZ −+  

for all )(0,][0,),( 21 MMxt ×∈ .  

Example 2. Consider the two-dimensional heat-like 
equation with variable coefficients as  

,=),(0,

,=),,(
2

1

),,(
2

1
),,(

2
2

1

22

2

xcycyxU

ykxyxtUy

yxtUxyxtU

yy

xxt

−

++

 

which (0,1), ∈yx , ](0, Mt ∈ , ][0, Jk ∈  and 

1,2=],[0, jLc jj ∈ . 

Similarly we can establish an iteration 
formula in the form  

.})(
2

1
)(

2

1
){(

=

222

0

1

dsykxUyUxU

UU

yynxxnsn

t

nn

−++

−

∫

+

  (38) 

 We begin with an initial arbitrary approximation: 

xcycyxUyxtU 2
2

10 =),(0,=),,( − , and using the 

iteration formula (38), we obtain the following 
successive approximations  

,)
3!2!

()
3!2!

(1

=),,(

,)
2!

()
2!

(1

=),,(

,)(1=),,(

2

32
2

32
2

1

3

2

2
2

2
2

1

2

2
2

2
11

xc
tt

tykx
tt

tyc

yxtU

xc
t

tykx
t

tyc

yxtU

ytkxxctycyxtU

−−+−−−+−

−+−−+−

+−−

 

and  

1.,)
!

1)(
(

)
!

1)(
(1=),,(

2
2

2
1

≥−
−

++−

−
−

++−

nxc
n

t
tykx

n

t
tycyxtU

nn

nn

n

Λ

Λ
 

Then, the exact solution is given by  

.1)(

=),,,,(=),,(

2
22

1 xceykxeyc

ckyxtGyxtU
tt −−− −−  

Fuzzify F  and G  producing their γ -cuts  

,)(=),,,(

,)(=),,,(

,)(1)()()(

=),,,(

,)(1)()()(

=),,,(

2
22

2
11

21
2

2
2

12

2

22
2

1
2

11

1

yxkyxtF

yxkyxtF

xceyxkeyc

yxtz

xceyxkeyc

yxtz

tt

tt

γγ

γγ

γγγ

γ

γγγ

γ

−−−

−−−

−−

−−

 

where )](),([= 21 γγ kkK  and 

1,2=)],(),([=][ 21 jccC jjj γγγ . We first check to 

see if ),,( yxtZ  is differentiable. We compute  

],)(
2

1
)(

2

1
)(

,)(
2

1
)(

2

1
)[(

2
2

2
2

2

1
2

1
2

1

yyxxt

yyxxt

zyzxz

zyzxz

++

++
 

which are γ -cuts of yxK 2  i.e. γ -cuts of a fuzzy 

number. Hence, ),,( yxtZ  is differentiable. 

Since the partial F  and G  with respect to 

k , )(xp  and )( yq  are positive then Theorem (5) 

tells us that ),,( yxtZ  is a BFS. The initial condition 

is  
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,)()(=),(0,

,)()(=),(0,

21
2

122

22
2

111

xcycyxz

xcycyxz

γγ

γγ

−

−
 

which are true. Therefore, ),,( yxtZ  is a BFS which 

also satisfies the initial condition. This BFS may be 
written  

,1)(=),,( 2
22

1 xCeyxKeyCyxtZ tt −−− −−  

for all (0,1), ∈yx , ][0,Mt ∈ .  . We consider the 

one-dimensional heat-like model  

,=)(0,

,=),()
2

1
(),(

2

22

cxxU

tkxxtUxxtU xxt −−+
    (39) 

 which (0,1]∈t , )
2

1
(0,∈x  and the value of 

parameters k  and c  are in intervals ][0, J  and ][0, L , 

respectively. 
We can obtain the following iteration 

formula for the Eq. (39)  

.})),()(
2

1
()),({(

),(=),(

22

0

1

dsskxxsUxxsU

xtUxtU

xxnsn

t

nn

+−+

−

∫

+

 (40) 

 We begin with an initial approximation: 
2

0 =),( cxxtU . By (40), after than two iterations the 

exact solution is given in the closed forms as  

.2
3

1

6

1

12

1
=),,,(=),(

23244 ctcxtcxtkxkxtkt

ckxtGxtU

−++−−
 

Since 0<= 22tx
k

F
−

∂

∂
 and 

0>
3

1

6

1

12

1
= 3244 txxtt

k

G
−−

∂

∂
, for  

)4(
4

1
<<01<0 2tttxandt ++−≤  

then there is no BFS (Lemma (5)). We proceed to 
look for a SS. We must solve  

,)(

=)),,()(
2

1
()),,((

,)(

=)),,()(
2

1
()),,((

22
1
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2

11

txk

xtuxxtu
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xxt

xxt

γ

γγ

γ

γγ

−
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−

−+

 

subject to  

 ,)(=),(0, 2xcxu ii γγ  

for 1,2=i , )](),([=][ 21 γγγ kkK  and 

)](),([=][ 21 γγγ ccC . By VIM, the solution is  

.)()(2)()(
3

1

)(
6

1
)(

12

1
=),,(

,)()(2)()(
3

1

)(
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2
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γγγ
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−++
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       (41) 

 Now we denote  
 )],,,(),,,([ 21 γγ xtuxtu  

defines γ -cuts of a fuzzy number on area as ℜ . 

Since ),,( γxtui  are continuous and 

,1),(=,1),( 21 xtuxtu  then we only require to check 

if 0>1

γ∂

∂u
 and 0<2

γ∂

∂u
. Since K  and C  are 

triangular fuzzy numbers, hence, we pick simple 
fuzzy parameter so that 0>=)(=)( 11 bck γγ ′′  and 

bck −′′ =)(=)( 22 γγ . The 'prime' denotes 

differentiation with respect to γ . Then, for a SS we 

need  
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 Therefore inequalities (42) hold if  

0,>2
3

1

6

1

12

1 23244 txtxtxxtt −++++−         (43) 

 for )
2

1
(0,∈x  and (0,1]∈t . The inequality (43) 

holds if we have  
 

.
2

1
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x
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We find that  
 

0.40103.=1}<0

|
412
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3
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≤
+

++++++−−

t
t
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Hence we may choose ℜ  by the above assumptions 
in form as  
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},
2

1
<0.401031&1<0|),{(= xtxt ≤≤ℜ  

and the SS exists on ℜ  in form Eqs. (41).  . We 
consider the one-dimensional heat-like model,  

 
,sin=)(0,

,cos=),(),(

xcxU

xkxtUxtU xxt −−
 

which )
2

(0,
π

∈x , ](0, Mt ∈  and the value of 

parameters k  and c  are in intervals ][0, J  and ][0, L , 

respectively. 
We can obtain the following iteration 

formula  

.}cos)),(()),({(
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xxnsn

t
nn
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∫
+

(44) 

 We begin with an initial approximation: 
xcxUxtU sin=)(0,=),(0 . By (44), the following 

successive approximation are obtained  
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nn
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Λ

Λ
 

We, therefore, obtain  

1),(cossin=),,,(=),( −+ −− tt exkxceckxtGxtU  

which is the exact solution. There is no BFS because 
0<1=)( −xp  (Lemma (5)). We proceed to look for 

a SS. We must solve  

,cos)(=)),,(()),,((

,cos)(=)),,(()),,((

112

221

xkxtuxtu

xkxtuxtu

xxt

xxt
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subject to  

,sin)(=),(0, xcxu ii γγ  

1,2=i , )](),([=][ 21 γγγ kkK  and 

)](),([=][ 21 γγγ ccC . The solution is  

.sinhcos)(1)cosh(cos)(
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We only need to check if 0>1

γ∂

∂u
 and 0<2

γ∂

∂u
, 

since the iu  are continuous and 

,1),(=,1),( 21 xtuxtu . We pick simple fuzzy 

parameter so that 0>=)(=)( 11 bck γγ ′′  and 

bck −′′ =)(=)( 22 γγ . Then, for a SS we require  

0.<)sinh1cosh(cos

)sinhcosh(sin=

0,>)sinh1cosh(cos

)sinhcosh(sin=
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1
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u
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u
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∂
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∂

∂

γ

γ

        (45) 

 Since (45) holds for each ](0, Mt ∈  and )
2

(0,
π

∈x , 

therefore, ),( xtU  is SS and  

,cossinh1)cosh(cos

sinsinhsincosh=),(

xtKtxK

xtCxtCxtU

−−

+−
 

for all ][0, Mt ∈  and )
2

(0,
π

∈x . 

7.  Conclusion 
 In this paper, by the VIM, we obtain the 

exact solutions of various kinds of fuzzy heat-like 
equations. The VIM produces the terms of a sequence 
using the iteration of the correction functional which 
converges to the exact solution rapidly. Application 
of this method is easy and calculation of successive 
approximations is direct and straightforward. We 
using the VIM and strategy based on (Buckly 1999) 
introduced two type of solutions, the Buckley-
Feuring solution and the Seikkala solution. If the BFS 
fails to exist and when the SS fails to exist we offer 
no solution to the fuzzy heat-like equations. 
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