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1. Introduction

Recently heat-like models for physical
problems have been caught much attention. These
models can exactly describe some nonlinear
phenomena, for example, the most celebrated Navier-
Stokes equations can be converted into various heat-
like equation in some special cases. We suppose the
existence of imprecise parameters in heat-like
equations with variable coefficients. Since fuzzy sets
theory is a powerful tool for modeling imprecision
and for processing vagueness in mathematical models
(Buckly 1999, Buckly 2000, Chalco-Cano2008,
Nieto 2006), therefore, the purpose of this paper is
using VIM and the same strategy as in Buckley and
Feuring (Buckly 1999) for solving heat-like
equations with fuzzy parameters.

The VIM (Abdou 2005, Shou 2008,
Wazwaz 2004, Biazar 2007, Sadighi 2007,
Abbasbandy 2009-64a, Abbasbandy 2009) gives
rapid convergent successive approximations of the
exact solution if such a solution exists without any
restrictive assumption or transformation that may
change the physical behavior of the problem. Very
recently Allahviranloo et. al. (Allahviranloo 2009)
discussed on the first order fuzzy differential
equations by VIM. In this paper, we consider the
iterative method for fuzzy heat-like equations in one
and two dimensions with variable coefficients by
VIM.

The paper is organized as follows: in
Section 2, we call some fundamental results on fuzzy
numbers. In Section 3 and 4, fuzzy heat-like
equations and the VIM are illustrated, respectively. In
Section 5, the same strategy as in Buckley-Feuring is
presented for two-dimensional fuzzy heat-like
equation. Some examples in Section 6 illustrated and
finally conclusions are given in Section 7.

2. Preliminaries
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We place a bar over a capital letter to denote
a fuzzy subset of R". So, < , ?, ?, etc. all
represent fuzzy subsets of R" for some n. We write
me(t) , a number in [0,1] , for the membership
function of & evaluated at t7 R". Define R£T
when m(t) £ mg (t) for all t. An g -cut of T is
always a closed and bounded interval that written
f[g], is defined as {t| /7% (t)® g}, for 0<g£1. We

separately specify ﬂO] as the closure of the union of

all the f[g] for 0<g£1. Let E shows a set of

fuzzy numbers (Ma 1999).
We represent an arbitrary fuzzy number by

an ordered pair of functions f[g] =[A(9), A (9)] .
0 £ g £1 which satisfy the following requirements

(@) A (9) isabounded left continuous
nondecreasing function over [0,1] ,
(b) A,(9) is a bounded left continuous non-
increasing function over [0,1],
©) A9 £A;(9)0E£9£EL.
A fuzzy set R= (a;,8,,a3),
(a; <a, <ay) is called triangular fuzzy number
with peak (or center) a,, left width a, - a; >0 and
right width a; - a, >0, if its membership function
has the following form

i a, -t

ol 4 eiga,

T ay - A

.
%(t):%l-m, a, £t £ a,,

i A&

70, otherwise.

1
1
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The support of T is [a;,a5] . We will write: (1)
T>0ifa, >0, (2) R20ifa 20, 3) A<0 if
a; <0; and (4) REO if a; £0. We adopt the

general definition of a fuzzy number given in
(Goetschel 1986).
3. Fuzzy heat-like equations
In this section, we consider the heat-like
equations in one and two dimensions which can be
written in the forms
(a) One-dimensional:

Uy (t,x) + pO)U (. X) = F (8, x, k), 1)
(b) Two-dimensional:
Uit X y) + pOU (8, X, y) + )
q(yU, (t,x,y) = F(t,x, y, k),
or
Ue(t X y) +a(yU o (X, y) + a)

P(U yy (8, %, y) = F(t, X, y,k),
subject to certain initial and boundary conditions.
These initial and boundary conditions, in
state two-dimensional, can come in a variety of forms

such as U(0,x,y)=c; or U(0,x,y) =g,(x,y,c,) or
UMy, % Y) = 92(X Y,C3,C4) »vons
In this paper the method is applied for the

heat-like equation (2). For Egs. (1) and (3), it is
similar to (2), so we will omit them. In following
lines, components of Eq. (2) are enumerated:

I'; =[0,M ] are three intervals, which

M;>0(j=1,23).

F(t,xy, k), Ut,x,y), p(x) and g(y) will be

continuous functions for (t, x, y)1 C)i.’zll -

p(x) and q(y) have a finite number of roots

for each (x,y)T 1, I5.

k=(k,K ,k,) and c=(c;,K ,c,,) are vectors

of constants with k; ininterval J; and c, in

interval L, .
Assume the Eq. (2) has a solution
U(t, x y)=G(t,x,y,kc), 4)

for continuous
G (Gy(t, %, y.k,0) + P(X)Gy (L, X, Y, k,©) + G(Y)Gyy (£, X, y,k,C) 1

kT J,cl L) with

ki 3=07_9;

continuous for (t, x,y)1 CN)?J’
~ A3
(ti X, y) I O j:ll j ’

i L=Q".L,.
Now suppose the value of the k; and c,

and

are imprecise. We will model this uncertainty by
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substitute triangular fuzzy numbers for the k; and

c,. If we fuzzify Eq. (2), then we obtain the fuzzy
heat-like equation. Using the extension principle we
compute P from F where f(t,x, y,m has

- (E,K ,m) for 1?, a triangular fuzzy number

in Jj, 1£ jEn. The function U become T, where
U:C)?’zllj ® E . That is, U(t,x, y) is a fuzzy
number. The fuzzy heat-like equation is

B+ 0000 +an)Ty, =Tt x v, R, (5)
subject to certain initial and boundary conditions.
The initial and boundary conditions can be of the
form B0, x, y)=?1 or B0, x, y) =T (%, y,?z) or
T, xy) =Txy.5.C) . The B, is the
extension principle of g;. We wish to solve the
problem given in Eq. (5). Finally, we fuzzify G in
Eq. (4). Let 2, x, y) =G (L, x, v, R, C) where Z is

computed using the extension principle and is a fuzzy
solution. In Section 5, we will discuss solution with
the same strategy as Buckley-Feuring for fuzzy heat-

like equation. Let ?[g]zf)?zlrj[g] and
Cla=0-Tlal-

4, The variational iteration method
To illustrate the basic idea of the VIM we
consider the following model PDE
LU+LU+LU+NU=F(xVY,Kk), (6)

where L, L, and L, are linear operators of t, x
and vy, respectively, and N is a nonlinear operator,

also F(t,x,y,k) is the source non-homogeneous

term. According to the VIM, we can express the
following correction functional in t -direction as
follows

Una(txy) =Un(tx y)+

Y ALU, +(L+L, +N)J, - Flds,
where / is general Lagrange multiplier (He 2004),
which can be identified optimally via the variational
theory (He 2006, Wazwaz 2007), and U, is a

restricted variation which means aU~n =0. By this
method, we determine first the Lagrange multiplier
/ which will be identified optimally. The successive
approximations U,,,, n3 0, of the solution U will
be readily obtained by suitable choice of trial
function U, . Consequently, the solution is given as

Ut x,y)=limU,({txy). (8)
n® ¥

()
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According to the VIM, we construct a correction
functional for Eq. (2) in the form

Una(69) =Un LX)+ () ©
{Un)s + POIUn)x +a()Uy)yy - F3ds,
where n30 and / is a Lagrange multiplier.
Making Eq. (9) stationary with respect to U,, we
have

/(s)=0,

1+/(8) 5= =0,
hence,the Lagrange multiplier is / =-1. Submitting

the results into Eq. (9) leads to the following iteration
formula

Un+l(t7 X, y) :Un(tv X, y) -

1

RUn)s +P)Un)x +a(y)Un)yy - F}ds.
Iteration formula start with an initial approximation,
for example U,(t,x,y) =U(0,x,y) . Also the VIM

used for system of linear and nonlinear partial
differential equations (Wazwaz 2007) which handled
in obtain Seikkala solution.

(10)

5. Buckley-Feuring Solution (BFS) and Seikkala
Solution (SS)

In (Buckly 1990), Buckley-Feuring present
the BFS. For all t,x,y and g,

2t %, V)g1= [zt % ¥, 9), 2, (t X, ¥, 9)], (12)
and

it % y. ®lg1=[F.(t. . y,9), F2 (&, x, v, 9)], (12)
that by definition
(% y,9) = (13)
min{G(t, x, y.k,¢) k1 Rlgl,c1 Tlal,

2,(t,xy,9) =

R N 14
max(G(t,x,y.k.0) k1 Rtal.cl Ty, ¥

and
Fu(t % y,9) = min{F(t,x, y, k) kT Rigly,  (15)

F,(t %, y,9) = max{F (t, x, y,k) kT Rlgl}. (16)

Assume that p(x)>0, q(y)>0 and the
z;(t,x,y,9), i =1,2, have continuous partial so that
(Zi)e + P(X)(Zi) x +a(Y)(Zi)yy is continuous for all
(t,x,y)1 CN)?’:le andall g. Define

&t % Y, 9) = (20)¢ + PO)(Z0) 0 +A(Y)(21) yy

(2,)c + POO(Z) o +A)(2), ] (7)
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for all (t,x, y)1 CN)?’:le and all g. If, for each fixed

(t,x,y)1 CN)?’:le, G(t, x, y,9) definesthe g-cut ofa

fuzzy number, then will be said that ?(t,x, y) is
differentiable and is written

Zi1g1+ p0Zulal + a7, [91= Gt X, v, 9), (18)
+ A3
for all (t, x, y)l szllj andall g.
Sufficient conditions for G, x,y,9) to
define g -cuts of a fuzzy number are [14]:

() @Ex Y. Q) + P @t XY D +aAN @ E X Y, 9)yy

is an increasing function of g for each
tx )T O
(i) 2% Y, @) + PR@ (X Y, @) HAY) 2 & X Y, D),y

is a decreasing function of g for each

(t,x,y)1 (Nji.’zll ;;and

(iii) (@t x y, 1) + P @t X Y, 1)) oW @t x y,1)), £
(2,(t,%, Y, D)) + P2 (t %, Y, 1)) AW (2, X, Y, 1))y

for (t, x, y)1 (")?’:J -

Now can suppose that the z; (t, X, y,g) have

continuous partial so

(zi)e + POI(Zi) e +AY)(Zi) yy s
?’:1“- “[0,1], i=1,2. Hence, if
conditions  (i)-(iii) above hold, ?(t,x, y) is
differentiable.

For ?(t, X, y) to be a BFS of the fuzzy heat-
like equation we need: (a) ?(t,x, y) differentiable;
(b) Eq. (5) holds for (e, x,y) = Z(t, x, y) : and (c)
?(t,x, y) satisfies the initial and boundary
conditions. Since no exist specified any particular
initial and boundary conditions then only is checked
if Eq. (5) holds.

Z(t, x,y) is a BFS (without the initial and
boundary conditions) if ?(t,x, y) is differentiable
and

7+ 00T +anZyy =Tt x, v, R,
or the following equations must hold
(2)r + PO)(Z1) xx +A(Y)(21) yy = Fi(t.X,Y,9), (20)
(22)e + P()(Z2) o +A(Y)(Z2)yy = F2(t X, Y,9), (21)
for all (t, x, y)1 6?’:1'1 andall g.

Now we will present a sufficient condition
for the BFS to exist such as Buckley and Feuring.

is continuous on QO

(19)
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Since there are such a variety of possible initial and
boundary conditions, hence we will omit them from
the following Theorem. One must separately check
out the initial and boundary conditions. So, we will
omit the constants c¢,,1£r £m, from the problem.

Therefore, Eq. (4) becomes U (t, x, y) =G(t, x, y,k),
S0 ?(t, X, Y) :g(t, X, y,m .
Theorem 1. Suppose ?(t, X, y) isdifferentiable.

(@) If

p(x)>0,q(y)>0,(x, )T 1, 13, (22)
and

— > 0 23)

Tk, 9K,

for j=1,K ,n, Then BFS=Z(t, X, y) .

(b) If relations (22) does not hold or
relation (23) does not hold for some j, then
?(t, X,y) isnota BFS.

Proof. It is similar to proof of Theorem 1 in (Buckly
1999).

Therefore, if ?(t,x, y) is a BFS and it
satisfies the initial and boundary conditions we will
say that ?(t, X, Yy) is a BFS satisfying the initial and
boundary conditions. If ?(t, X, y) is not a BFS, then

we will consider the SS. Now let us define the SS
(Seikkala 1987). Let

T x g1 =1u(t x v, 9),u; ¢, %, v, 9)]

For example suppose p(x)>0 and q(y)<0, so
consider the system of heat-like equations

(Up)e + P(X)(Ur) e +a(Y)(Uz)yy = Fi(t. XY, 9). (24)
(Uz)e + POYU2) e +a(Y)(UL) yy = F2(t X, Y, 9), (25)
for all (t,x y) 6?:1'1 and all g1 [0,1] . We
append to Egs. (24) and (25) any initial and boundary
conditions. For example, if it was U(O, X, y)=?1
then we add

u,(0,%,y,9) =cy1(9), (26)
u,(0,x,Y,9) =cy, (9), (27)
where  Cilg] = [c11 (). C12 (9)] Let

u; (t, x,y,9),(i=1,2) solve Egs. (24) and (25), plus
initial and boundary conditions. If

[uy (t, %, y,9), Uz (t. X, ¥, 9)], (28)
defines the g -cut of a fuzzy number, for all
@t x, y)i (")?’:g i then B¢, x, y) is the S,

We will say that derivative condition holds
for fuzzy heat-like equation when Egs. (22) and (23)
are true.
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Theorem 2. (1) If BFS= ?(t,x, y) , then
ss= Zt,xy) . @ 1f ss=Tut,xy) and the
derivative condition holds, then BFS=U(t, XY).

Proof. (1) Follows from the definition of BFS and SS.
@) 1f ss=Tt,x,y) then the Seikkala derivative

(Buckly 2000) exists and since the derivative
condition holds, therefore, Egs. following holds

(Uy)e + POYUL) o +A(Y)(U1) gy = Fa(t Xy, 9), (29)
(Uz)e + POOU) o +A(Y)U2)yy = Fo (6% Y, 9). (30)

Also suppose one k; =k and 1%—E< 0, 112—E< 0 (the

other cases are similar and are omitted).
We see

71(t,x,y,9) =Gt x y,ky(9)),  (31)
2,(txYy,9) =6 Xy, k(9),  (32)
Ftxy g =Ftxyk(9)  (33)
Fo(txy.9)=F(txy.k(9).  (34)

Now look at Egs. (20) and (21) also Egs. (13) and
(14), implies that
up(t, %y, 9) =G(t X, ¥,k,(9)) = 2, (t, X, ¥, 9),
ua(t %y, 9) =Gt x, ¥,k (9)) = 2, (t. X, ¥, 9).
Therefore BFS=U(t, X, Y).

Remark 1. The Theorem 1 hold for Eq. (3) and the
proof is similar to Theorem 1 in (Buckly 1999).

Lemma 1. Consider Eqg. (1). Assume ?(t,x) is
differentiable.

(a) If
p(x)>0,xT 1,, (35)
and
— > 0 (36)
Tk; Tk;

for j=1,K ,n, Then BFS=Zt, x).
(b) If relation (35) does not hold or relation (36) does
not hold for some j, then ?(t, X) isnot a BFS.
Proof. It is similar to Theorem 1 in (Buckly 1999).
6. Examples

We consider the following
examples.
Example 1. We first consider the one-dimensional
initial value problem

illustrating

U, +éx2u o =K, (37)

subject to the initial condition U (0,x)=cx? and
tT (0,M;],xT (0,M,). Let k1 [0,J] and cT [0, L]
are constants. According to the VIM, a correct

functional for Eg. (37) from Eg. (10) can be
constructed as follows

editor@americanscience.org
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Upa (6 X) =U, (8 X) -

1 1

QU (520 +emx® (U (5, X)), - K.
Beginning  with an initial  approximation
Uy, x)=U(0,x) = cx?, we can obtain the following
successive approximations

U, (t,x) = kt +cx?(1- 1),
2
U, (t, x) = Kt + ox?(L- t+t?),

) t2 3
U, (t,x) =kt +cx“(1- t+?-3-!),

and
U,(t,x)=
t? t"
kt +cx?(1- t+?+L +(-1) e n3 1,
! ni

The VIM admits the use of
U(t, x) = lim U,(t, x),
n® ¥

which gives the exact solution

U(t,x) =kt +cx%et.
fuzzify F(t,x,k)=k
G(t,x,k,c) =kt +cxZet . Clearly Tt x ) =% so
that F(t,x,9) =k, (9) and F,(t,x,9) =k,(g) . Also
Tt x BT =T +Tx%t, therefore,

2; (t,x,9) = ki (9t +¢; (g)x*e ™",

for =12, Rigl=[k(9) k. (9]
?[g] =[c,(9).c,(9)] ?(t, x) is differentiable

because (z;), +%x2(zi)xx =k;(g),i=1,2. That is,

Now we and

and

Z +%X2?XX =%, a fuzzy number. Since p(x)>0,

2—i>0 and :II—[:>O, Lemma (5) implies the result

that ?(t, X) isa BFS. We easily see that

2 (0,%,9) = ¢; (9)x*,
for i=1,2, so ?(t, X) also satisfies the initial
condition. The BFS that satisfies the initial condition
may be written as

T, x) =T +Cx2et,
for all (t,x)T [0,M,]” (0,M,).

Example 2. Consider the two-dimensional heat-like
equation with variable coefficients as

U, (t, X, y) +éx2U o GXY)+

%yzu o &% y) = ke,
U(0,% y)=cy? - cyx,
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which x,yT (0,1) , ti (O,M] ,
c;T[0L;lj=12.

Similarly we can establish an iteration
formula in the form

U,y =U,-

QULs +em U +emy2(Uy),, - oy
We begin with an initial arbitrary approximation:
Uy (t,x, y)=U(0,x,y)=c,y? - ¢,x, and using the

iteration formula (38), we obtain the following
successive approximations

U (t, %, y) = y2(1- t) - cox +kx?yt,

kT [0,J] and

(38)

Uy (txy)=
2 {2 2 {2
Gy (1- t+?|)- kx y(-t+?|)- CyX,
Us(t,x,y) =
, t2 t3 ) t2 3
Gy (1- t+?-3—!)- kx y(-t+?-3—!)- CyX,
and

ngn
U,(txy)=cy?(1-t+L +£—1|&)-
n!
ngn
kx?y(-t+L +£—1|&)- c,x,n3 1.
n!

Then, the exact solution is given by
U(t, x,y)=G(t,x,y,k,c) =
cy?e - kdy(e ! - 1) - cox.
Fuzzify F and G producing their g -cuts
7 (tx,y,9) =
Cll(g)yze_t - kl(g)xzy(e_t - 1) - e (9)x
z,(t,xy.9) =
Ci2 (g)yze_t - k; (g)xzy(e_t - 1) - cn(9)x
Fu(t X, Y, 9) = ki (9)x%Y,
Fa(t. %, Y,9) = ko (9)%%Y,
R= k(). k; (9)]
Cilg=1c1(9).c;2(9)], =12 We first check to

where and

see if ?(t, X, y) is differentiable. We compute
1 1
[(Zl)t +?X2 (Zl)xx +?y2 (Zl) yy!
1 1
(Zz)t +?X2 (Zz)xx +?y2 (Zz)yy],

which are g -cuts of Rx2y i.e. g-cuts of a fuzzy

number. Hence, ?(t, X, y) is differentiable.
Since the partial F and G with respect to
k, p(x) and qg(y) are positive then Theorem (5)

tells us that ?(t, X, y) is a BFS. The initial condition
is
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2,(0,%,Y) = 1, (9)y? - 5 ()X,
2,(0,%, y) = C12(9)y” - Cx (9)X,
which are true. Therefore, ?(t, X, y) is a BFS which

also satisfies the initial condition. This BFS may be
written

Zit.xy) =Cry2et - By - 1)- Tyx,
for all x,y!l (0,1, tl [0,M]. . We consider the
one-dimensional heat-like model

1

Ut(t,x)+(?- X)U o (8, X) = - kxt?, (39)

U (0, x) = cx?,

which tT (0,1] , xI (O,%) and the value of

parameters k and c are in intervals [0,J] and [0, L],

respectively.
We can obtain the following
formula for the Eq. (39)

Un+1(t’ X) =Un (t’ X) -

1 1

QU (,0)s + 6= XU (5, ) o + x5
We begin with an initial approximation:
Uy(t,x) = cx?. By (40), after than two iterations the

exact solution is given in the closed forms as
U(t, x) =G(t, x,k,c)=

ki’ - %kxt4 - %kxzts +cx2 + 2cxt - ct.

iteration

(40)

Since --. x’t? <0 and
Tk
E:&t“ - ixt4 - ixzt3 >0, for
Tk 12 6 3

0<t£1 and O<x<%(-t it +12 )

then there is no BFS (Lemma (5)). We proceed to
look for a SS. We must solve

(018X, ) + @ X)X ) =

- ky (g)x%t2,
(Ut X0 + @ 02t %0 =
- ky (9)x°t2,
subject to
u; (0, %, 9) = ¢; (9)x°,
for i=12 . Rlgl=[k(9) k(@] and

?[g] =[c,(9),c,(g)]. By VIM, the solution is

http://www.americanscience.org 343

1 1
up (t, %, 9) :Ekz (g)t4 - ?kz (Q)Xt4 -

2t3

=k, X717+, (0" + 26, (94t~ €,

1 1 (41)
Uz (t,x, 9) =emmk, (gt* - =k, (g)xt* -

1
?kl (Q)X2t3 +C, (Q)X2 +2¢,(g)xt - ¢, (gt
Now we denote

[u, (t, x, ), u5 (t, X, 9)],
defines g -cuts of a fuzzy number on area as A .

Since u; (t,x,9) are and
uy (t, x,1) = u, (t,x,1) then we only require to check

if m>0 and ﬂ&<0 . Since ¥ and ? are
g g

triangular fuzzy numbers, hence, we pick simple
fuzzy parameter so that kf(g) =cf(g)=b>0 and

ki(g)=cs(g)=-b The 'prime'’  denotes
differentiation with respect to g. Then, for a SS we
need
fu, _
g
- ammbt* +ambxt* +eambx?t? +bx? + 2bxt - bt =
12 6 3

continuous

b(-ét4 ramxt? +emx?t® + X2 + 2xt - t)>0,
12 6 3
flu, _
19
bt - ambxt” - @bx?t? - bx? - 2bxt + bt =
12 6 3

(42)

- b(-ét4 +£xt4 +ix2t3 +x% +2xt - t) <0.
12 6 3
Therefore inequalities (42) hold if

- aat® +%xt4 +%x2t3 +x2 +2xt- t>0, (43)

12
for xI (O,é) and t1 (0,1] . The inequality (43)

holds if we have

0<t£1,
- 12 - t4 +@RL44 +144% +60t% +24° +4t7 +1° 1
< X <am,
12+4t°
We find that

max:

- 12t- t? +i44t +144t% +60t* +24t° + 4t7 +1°

12 + 4¢3
0<t£1}=0.40103.

Hence we may choose A by the above assumptions
in form as
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A ={(t, x) |0 <t £1&0.401031£ x <é},

and the SS exists on A in form Egs. (41). . We

consider the one-dimensional heat-like model,
U, (t,x) - U, (t,x)=-kcosx,

U (0,x) =csinx,
which x1 (O,%) , t1 (0,M] and the value of

parameters k and c are in intervals [0,J] and [0, L],

respectively.
We can obtain the following
formula

Un+1(tv X) :Un(tv X) -

QUG X)s - (U (5, X)) +k o5 x3ds.
We begin with an initial approximation:
Uy(t,x)=U(0,x) =csinx . By (44), the following
successive approximation are obtained

U, (t,x) =csin x(1- t) - ktcosx,
2 2
U, (t x) = csin x(1- t+t?l) +K cos x(-t+t?|),

nign
U, x)=csinx(1-t+L +‘—1m+

n!
ngn
kcosx(-t+L +£_1|&),n3 1.
n!

We, therefore, obtain
U(t,x) =G(t, x,k,c)=ce 'sinx +kcosx(e™" - 1),
which is the exact solution. There is no BFS because
p(x)=-1<0 (Lemma (5)). We proceed to look for
a SS. We must solve
(Us(t, %, @)1 - Uz (6, X, ) = - Ky (g)COS X,
Uz (t,%,9))¢ - (ULt X, 9)) = - Ky (g) cos X,
subject to

iteration

(44)

and

u; (0,%,9) =c;(g)sinx,

iz12,  Rld=k(@) k@]
?[g] =[c,(9),c,(g)]. The solution is

u, (t,x,g) = c;(g)coshtsinx - ¢, (g)sinhtsinx +
k; (g)cos x(cosht - 1) - k,(g)cos xsinht,

U, (t,x,9) = c,(g)coshtsinx - ¢;(g)sinhtsin x +
k,(g) cos x(cosht - 1) - k; (g)cos xsinht.

and

We only need to check if m>0 and &<0,
)17} )%
since the u; are continuous and

uy (t, x,1) = u, (t, x,1) We pick simple fuzzy
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parameter so that kf(g)=cf(g)=b>0 and
ks(g) =c5(g) =-b. Then, for a SS we require
%E: bsin x(cosht +sinht) +
g
bcos x(cosht - 1+sinht) > 0, (45)

ﬂ—#ﬁ: - bsin x(cosht +sinht) -
bcos x(cosht - 1+sinht) <O0.
Since (45) holds for each tT (0,M] and xIi (O,%),

therefore, U(t, X) is SSand
U(t, X) =®coshtsinx - G sinhtsin x +
Rcos x(cosht - 1) - Rsinht cos X,

forall ti [0,M] and xi (o,%).

7. Conclusion

In this paper, by the VIM, we obtain the
exact solutions of various kinds of fuzzy heat-like
equations. The VIM produces the terms of a sequence
using the iteration of the correction functional which
converges to the exact solution rapidly. Application
of this method is easy and calculation of successive
approximations is direct and straightforward. We
using the VIM and strategy based on (Buckly 1999)
introduced two type of solutions, the Buckley-
Feuring solution and the Seikkala solution. If the BFS
fails to exist and when the SS fails to exist we offer
no solution to the fuzzy heat-like equations.
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