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Abstract: In this paper a variational integral is constructed for the estimation of the coefficient of minimum drag for 
axial flow over axi-symmetric bodied of revolution. The unknown equation of the profile is determined by writing 

and solving the corresponding Euler-Lagrange equation. This results in the equation  . This 

reduces to a cubic equation and the real root is obtained by the method of Cardan. The equation of the curve is then 
obtained by integration. The integral for the Drag coefficient is computed numerically. The profile  is plotted 
graphically. 
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Introduction: 

In aeronautical and marine engineering Drag 
force on moving bodies must be kept small enough to 
increase the range and reduce the ejecting force (the 
release force). Aircrafts and submarines have stream 
lined shape and conical shaped fronts to ease the fluid 
flow over. Such bodies are bodies of revolution with 
their axis of symmetry along the direction of flow. 
The diameter of the base of the conical front is equal 
to the diameter of the body to ensure smooth 
junction. Also, the depth of this conical front is 
determined by other design and construction 
parameters. 

Drag on bodies of revolution and other bodies’ 
results from the change in momentum of the fluid 
stream upon attacking the body. Fluid mechanics 
principles assert that the resistance force associated 

with mass flow rate  and caused by change in 

velocity of the stream  is equal to 

This force is resolved into two 

components; axial and named Drag  along the axis 
of flow and opposite to its direction 

 and a component called lift force 

 normal to the direction of flow and is given by 

. In bodies of revolution with 
axial flow, the integral of the lift force over the 
surface of revolution is zero due to symmetry [10, pp. 
271]. 

\ 

 
 
For a jet of velocity and mass density  

associated with projected area , the mass flow rate 

the change in velocity  along the 

direction of  is  when  a shape 

factor which is defined as the coefficient of Drag. So 

the drag force , 

where is defined as stagnation pressure [10, 

pp. 115]. In this paper we shall obtain the equation of 
the profile of the head which ensures minimum drag 
and the corresponding drag coefficient.  
 
Literature review 

The treatment in the present work is based on two 
basic subjects; axi-symmetric flows and variational 
methods. Several articles in literature can be found on 
both subjects. 

For the first; namely axi-symmetric flow we 
mention first the paper by Cumming et al. [1]in 
which they handled the problem of supersonic 
turbulent flow computations and drag optimization 
for axi-symmetric after-bodies. Next we mention the 
similarity study on mean pressure distributions of 
cylindrical and spherical bodies by Yeung [2]. 
Montes and Fernandez [3] studied the behavior of 
hemi-spherical dome subjected to wind loading. Also, 
Nelson et al. [4] determined the surface pressure for 
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axi-symmetric bluff bodies.  For the variational 
methods, we refer to the paper on variational 
methods, multi-symmetric geometry and continuum 
mechanics by Marsden et al. [5]. We refer also to the 
paper by Fernandez et al. [6] on the stress energy-
momentum tensors in higher order variational 
calculus. Next we mention the work by Kouranbaeva 
and Shkoller [7] on variational approach to second 

order multi-symmetric field theory. At last we 
mention the paper by Lewis and Murray [8] on the 
variational principles for constrained systems. The 
minimum drag shape recently treated by by Dong et 
al.[11] deals with the problem for semi-ellipsoid 
exposed to shear flow but without obtaining the 
profile  
 

 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A schematic of the problem 

 

 

 
Formulation of the problem 

Consider the body whose axis of symmetry lies 
along the axis. The body is at rest in its frame 

moving toward the  axis with its velocity in the 

negative direction. Uniform horizontal flow with 

relative positive velocity  moving towards the 
body. The maximum radius of revolution of the body 
is  and the head depth is . The flow attacks the 
body and reflects on the surface of the head. We 
consider frictionless attack so that the angle of attack 

 equals the angle of reflection. We also consider 
perfect attack so that the magnitude of the velocity of 

attack is equal to the velocity of reflection; both are 
equal to the relative velocity . A schematic of the 
problem is shown in figure (1). 

The change in the horizontal velocity due to 
attack

The total mass flow rate on the body  
m& . The element of drag force on the 

body where  

;so that . Since 

y  

B 

x 
X(t) 

A 
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, we have  Which is equated to  to yield  

                         (1)      

We are interested in finding the shape or 

which minimizes the coefficient of drag   
 
 
 
Solution  

We require determining the function  or its 

inverse function  so that the 

integral  is minimum. Putting 

,we require  

  with the relation 

 is not yet determined. The Euler-Lagrange’s 

equation is =0                           (2) 

But 

constant where

.               

   (3) 

Where  are positive and is negative and 
has the unit of distance.      

Equation (3) is rearranged to take the form 

, where  and   

 

X . Now, let , leading to  

. From [9, pp.9], we get the 
real root 

 (4)       

Consequently, the ranges of and will be 

 ,   

From (4), we can write 

Then 

(5) 

 
The integrand is expanded in series up to degree 8 
then is integrated1 to yield  

 
 -  

 
+O (Y9)                                                             (6)  
 The maximum error is less than , for the 

range  and 

.  This function isplotted in 
figure 2. The profile curve doesn’t pass through (0,0), 
since  is not defined at Y=0 
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figure 2.a  
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 Ymax=3  

 
 
 
 
 
 
 
 
 
 
 
 Xmax=1.173 

Xmax=0.45 B  
 
 
 
 Figure 2 b: Schematic for major dimensions.
 
 
 
 
The depth of the profile  

, then  

 
= - =1.173 =0.45 B 

The drag coefficient:  
Using equation (1) 

 
We recall the value of  from equation (4), the 
integrand is finite in the whole range of integration. 
The above integral is computed using Simpson’s rule 
with 1000 subdivisions and gives   
 
Comment 

The analysis is carried out for invicid flow 
in the absence of any friction; this requires that the 
velocities are small enough to prevent turbulence. 
Very little is available in literature for invicid drag on 
axi-symmetric bodies; so, comparison with other 
results was found difficult. The minimum value of 

the coefficient of drag for axi-symmetric bodies is 
found to be 3.78. The value of the drag coefficient for 
spheres is found experimentally 4 at Reynolds 
number 10 [10,pp. 271]. 
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