
Journal of American Science, 2011;7(7) http://www.americanscience.org

222

Novel design metrics to measure real time environment application design.

Mahmood Ahmed
1
, Dr. M. Shoaib

1

1
Department of Computer Science & Engineering, University of Engineering & Technology Lahore Pakistan

mahmood@uet.edu.pk, shoaib_uet@hotmail.com

Abstract: In this paper we have defined a set of novel design metrics for measuring the design of specially real time

environment applications. The aim of the defined new metrics set is to measure the design before handing over to

the implementation team. The errors in the design can cost you money and time. Majority of the methodologies

leave the task of managing the issue of task deadlines for software programmers in the implementation phase at the

coding language stage. LCSF is measured for various methodologies. A non real time system design is also

measured for design metrics. Results are plotted and discussed.

[Mahmood Ahmed, M. Shoaib. Novel design metrics to measure real time environment application design.

Journal of American Science 2011;7(7):222-226]. (ISSN: 1545-1003). http://www.americanscience.org.

Keywords: Deadlines, Design Metrics, Real Time Systems, Design Measurement.

1111 IntroductionIntroductionIntroductionIntroduction

Strict time limit on task deadlines is the most

desired feature of real time [8] [26] . Because of this

strict timing restriction real time system design is a

challenge. Normally designers leave this task for the

developer to cater, in the implementation phase [20] .
Normally the methodologies for real time system do

not handle inheritance of deadlines [3] [20] [21] and

[23] . There is another property which gaining

interest is usability. But the properties that lead an

application to user friendliness for novices are often

dissimilar from those preferred by expert users or the

software designers [10] . Usability is also becoming
demanding attribute but it is very not easy to quantify

usability, user surveys may be useful in measuring

usability [10] . Design quality is very important
entity that should be taken into account in any

software product [22] . This phase get 5 to 10 % of

the entire effort but bulk (up to 80%) of whole effort

consumed in correcting flawed design decisions [1] .
There are many metrics proposed for capturing the

quality of Object Oriented design [18] . Coupling and
cohesion are most widely used metrics [11] .

Coupling tells about how heavy is the coupling how

modules are interdependent on each other is it a very

spaghetti coupling or is it a very clean structured

decomposition where you have a very low coupling

and but there is collaboration through low coupling

and very highly cohesive modules [7] . So each

module is together but different modules are not very

tightly coupled to each other. So this is what you

would like to achieve high cohesion and low

coupling [3] Class cohesion is associated to quality

attributes of a software system as discovered in the

empirical studies in [13] [14] [9] So independence or

separation of concern is a very important principle of

software engineering [6] [15] [5] There also many

other design metrics that measure the design, but to

measure real time system design no metrics have

been defined up to best of our knowledge. In this

paper we have studied various design methodologies

[12] [16] and [28] . All of these methodologies are

studied from the point of view of real time

environment.

2222 Main Contribution of this reseaMain Contribution of this reseaMain Contribution of this reseaMain Contribution of this researchrchrchrch

The main contribution of this research paper is

the definition of eight new design metrics that have

been related to the measurement of design of real

time environment applications.

2.12.12.12.1 VerificationVerificationVerificationVerification using using using using Proposed DProposed DProposed DProposed Design Metricsesign Metricsesign Metricsesign Metrics

We have defined the following eight new

metrics for measuring a real time system design.

Purpose is to measure the design before

implementation.

2.22.22.22.2 Soft Deadline Class FactorSoft Deadline Class FactorSoft Deadline Class FactorSoft Deadline Class Factor

SDCF is defined as the ratio of the total no. of

classes with soft deadlines to the overall sum of no.

of classes with overridden, hard & soft deadlines.

Where

n = Total no. modules constraint by timing

restriction

m = Total no. classes per module constraint by

timing restriction

Journal of American Science, 2011;7(7) http://www.americanscience.org

223

This factor concerned about the type of the real

time system. If the value of this factor is high this

means the system modules may be given less

attention, as the error tolerance level for meeting

timing requirements is more.

2.32.32.32.3 Hard Deadline Class FactorHard Deadline Class FactorHard Deadline Class FactorHard Deadline Class Factor

HDCF is defined as the ratio of the total no. of

classes with hard deadlines to the overall sum of no.

of classes with overridden, hard & soft deadlines.

Where

n = Total no. modules constraint by timing

restriction

m = Total no. classes per module constraint by

timing restriction

This factor is also concerned about the type of

the real time system. If the value of this factor is high

this means the system modules may be given more

attention, as the error tolerance level for meeting

timing requirements is low.

2.42.42.42.4 Overridden Deadline Class FactorOverridden Deadline Class FactorOverridden Deadline Class FactorOverridden Deadline Class Factor

It is defined as the ratio of the classes having

overridden deadlines to the total no. of classes having

soft, hard, overridden deadlines.

Where

n = Total no. modules constraint by timing

restriction

m = Total no. classes per module constraint by

timing restriction

This factor is the very vital as it reveals about

timing related complexities lying in the modules with

soaring ODCF value. These complexities are due to

the inheritance of task timing requirements or task

deadlines. The largest part of the attention must be

centered on those modules with very high ODCF.

2.52.52.52.5 Soft Overriding FactorSoft Overriding FactorSoft Overriding FactorSoft Overriding Factor

SOF factor is defined as the ratio of the

Overridden Deadline Class Factor (ODFC) to the

Hard Deadline Class Factor (ODFC).

SOF gives information about the overall

inclination the module. Either it is tilted in the

direction of hard or the soft real time approach. If the

value of SOF is less than one it means timing

restriction on the task have to be met at any cost.

2.62.62.62.6 Message Exchange FactorMessage Exchange FactorMessage Exchange FactorMessage Exchange Factor

 No. of exchanged messages considered per

second between project partitions.

If the value of this factor is high this means that

more the underlying component must be critically

analyzed. It also tells about how heavy is the

coupling how modules are interdependent on each

other is it a very spaghetti coupling or is it a very

clean structured decomposition where you have a

very low coupling. It is also desired that there is

collaboration through low coupling and very highly

cohesive modules. So each module is together but

different modules are not very tightly coupled to each

other. So this is what you would like to achieve high

cohesion and low coupling [3] and at the same time

you want to achieve separation of concerns and also

collaboration.

2.72.72.72.7 Early Decomposition Factor.Early Decomposition Factor.Early Decomposition Factor.Early Decomposition Factor.

The Early Decomposition Factor (EDF)

Mathematically it can be symbolized as

It is also kept in mind that this metric has not as

much of importance when only object oriented

systems are under consideration. This early partition

decision will have a serious impact on the system

resources. If there are too much messages exchange

between the various partitions of the projects then it

Journal of American Science, 2011;7(7) http://www.americanscience.org

224

might be possible that resource consumption goes out

of limits.

2.82.82.82.8 Deadline based PredictabilDeadline based PredictabilDeadline based PredictabilDeadline based Predictability Factority Factority Factority Factor
The DPF Factor is defined as ratio of the total

no of classes with soft deadline to the total no. of sub

classes and added effect of total no. of multithreaded

objects.

In Mathematical language it is symbolized as

Since multithreading enhances the predictability

therefore in ideal situation the 1st factor must be than

one and preferably should be close to zero and 2nd

factor must be greater than one [27] .

2.92.92.92.9 Life Cycle Support FactorLife Cycle Support FactorLife Cycle Support FactorLife Cycle Support Factor
Life Cycle Support Factor is defined as the ratio

of number of phases having support for timing

constraints/deadlines to the total no. of phases in the

life cycle plus one.

Every methodology has support for timing

constraints/deadlines Software life cycle in a number

of phases. Ideally this factor should be equal to 1, this

imply that the methodology bear support for timing

constraints/deadlines in the entire life cycle further

than the code release stage and into the code

maintenance phase.

3333 Case StudyCase StudyCase StudyCase Study
 Now as a case study we consider the following

eleven different methodologies, as listed in the table

no. 1, and computed the LCSF metric for them is also

listed. We studied each methodology and searched

which phases carry support for the task timing

limitations/deadlines and computed the LCSF factor.

To make things easier we considered the following

specific no. of phases for Timing constrains/deadline

support reflection.

We come to conclusion that no methodology

has full life cycle support. A three dimensional bar

chart of the LCFS is shown in figure 7. It is evident

that HRT-HOOD [19] [27] ROOM [25] &

OCTOPUS [17] , ARTS [27] , have good support for

the timing constrains/deadlines in different phases of

the software development life cycle. JSD [2] [24] has

support only in one phase. We searched many design

documents for real time systems but unfortunately we

were not able to get our desired real time system

design examples that have considered the

deadlines/timing constraints in the entire life cycle.

So we are unable to compute the remaining metrics.

To compute design metrics we used the tool

SDMetrics [4] which is a software design metrics

measurement tool for especially for UML diagrams.

UML is these days a preferred software design tool

preferred by a good number of designers. SDMetrics

itself is analyzed through their own tool.

Two important metrics DIT and WMC [11]

have been measured. DIT tells about how deep is

your inheritance tree? If it’s too deep then it is

considered to be complex in terms of say the

behavior of different polymorphism possible or the

behavior or the tracing required to understand that

which method is going to be invoked through the

inheritance tree.

DIT is plotted as a histogram in Figure 8. A

high value of DIT means it is difficult to understand

those classes inherit from a lot of classes. It is also

found out that, classes having high value of DIT may

not be correct specializations of every predecessor

class Error! Reference source not found..

For the module NumOp (Number of operations)

in Figure 9 we have plotted a histogram for the

metric WMC (Weighted method complexity) [11] ,

Error! Reference source not found..

Table 1: Life Cycle Support Factor for different

methodologies.

Methodology

Phases having

Support LCSF

JSD 1 0.142857

ATRS 3 0.428571

COBRA 1 0.142857

HOOD/PNO 1 0.142857

HRT-HOOD 4 0.571429

OCTOPUS 2 0.285714

OMTs 1 0.142857

OPNets 1 0.142857

ROOM 3 0.428571

RTO 1 0.142857

Transnet 1 0.142857

Journal of American Science, 2011;7(7) http://www.americanscience.org

225

Figure 1: 3-D Plot of LCSF Factor

Figure 2: Histogram plot for DIT [4] .

Figure 3: Histogram plot of the NumOp (WMC) [4] .

The graph shown in figure 10 is a Kiviat

diagram [4] , showing the values of all metrics for the

module ExpressionNode. Each axis (or ray) of the

Kiviat diagram represents one metric, as labeled in

the diagram. The range of the metric is the scale of

all axes: the lowest value is to be found in the center,

the highest value at where the axis ends. The scaling

of all the axes is linearly done. The table on the right

side of the figure 9 shows, different percentiles

values against the no. of metrics whose values go

beyond the percentile for the selected module.

Metrics with higher values point to inferior quality, a

module design must be considered critical for which

most of metric values for the module are in the higher

percentiles (e.g., 90th, 95th).

Figure 4: Kiviat Plot for the rule ExpressionNode

module [4] .

Figure 11 is a discovery of the design rule

violation by the SDMetrics tool at the package level

design. Although the severity of the design rule

violation is of medium and low level, still these

discovered violations may help the designers to

revisit their design and try to correct those errors

early and before the implementation.

Figure 5: Design rule violation at package level [4] .

4 Conclusion

In this paper we have defined a new metrics

suite for the measurement of a real time environment

application design. The metrics that have been

defined are targeted to especially measure the real

time system design, to identify the modules needing

more detailed concentration. Those designs of those

modules are revised again for the purpose of quality.

References

[1] S.R. Ragab, H.H. Ammar, “Object Oriented design

Metrics and tools a Survey”,7th International

Conference on Informatics and Systems (INFOS),

IEEE, Page(s) 1-7, 2010.

[2] Michael A. Jackson and John Cameron, “Jackson

system development”, http://jackson-system-

development.co.tv/, last visited 2010.

[3] Sukainah Husein, Alan Oxley, “A Coupling and

Cohesion Metrics Suite for Object-Oriented

Software”, International Conference on Computer

Technology and Development, ICCTD '09, 2009,

Page(s): 421 - 425.

Journal of American Science, 2011;7(7) http://www.americanscience.org

226

[4] SDMetrics "The Software Design Metrics tool for the

UML" http://www.sdmetrics.com accessed in May

2011.

[5] Gui, G., Scott, D., "Measuring Software Component

Reusability by Coupling and Cohesion Metrics,"

Journal of Computers, vol 4, no 9, pp 797-805, 2009,

Academy Publishers.

[6] Marcus, M., Poshyvanyk, D., “Using the Conceptual

Cohesion of Classes for Fault Prediction in Object-

Oriented System”, IEEE Transactions on Software

Engineering, Vol. 34, No. 2, 2008.

[7] Linda Northrop, “Let's Teach Architecting High

Quality Software”, IEEE 19th Conference on Software

Engineering Education & Training, 2006, page(s) 5.

[8] Rob Williams, “Real-Time Systems Development”,

Butterworth-Heinemann publications, Elsevier, 2006.

[9] Zhou, Z., Leung, H., “Empirical Analysis of Object-

Oriented Design Metrics for Predicting High and Low

Severity Faults”, IEEE Trans. On Software

Engineering, Vol. 32, No. 10, pp 771-789, 2006.

[10] Phillip A. Laplante, “REAL-TIME SYSTEMS

DESIGN AND ANALYSIS”, third edition, Wiley

IEEE press, 2004.

[11] Norman E. Fenton, Shari Lawrence Pfleeger: Software

Metrics, A Rigorous and Practical Approach,

Thomson Learning, 2003.

[12] Gjalt de long, “A UML-based design methodology for

real-time and embedded systems,” in Proceedings of

Design, Automation and Test in Europe Conference

and Exhibition, 2002, page(s) 776-779, 2002.

[13] Briand L., et al., “Exploring the Relationships between

design measures and software Quality in Object

Oriented Systems”, Journal of Systems and Software,

Vol. 51, Issue 3, pp. 245-273, 2000.

[14] Gyimothy, T., Ferenc, R., and Siket, I., “Empirical

Validation of Object-Oriented Metrics on Open

Source Software for Fault Prediction,” IEEE

Transactions on Software Enineering, Vol. 31, Issue

10, pp. 897-910, 2005.

[15] Lee, J., Jung, S., Kim, S., Jang, W., and Ham, D:

“Component Identification Method with Coupling and

Cohesion,” in Proceedings Eighth Asia-Pacific

Software Eng. Conf., pp. 79-86, Dec. 2001.

[16] Timothy G. Woodcock, “Extensions to Real-Time

Object-Oriented Software design Methodologies”,

PhD Thesis, FAU, 1996.

[17] Jurgen Ziegler, Maher Awad, Juha Kuusela,”

Applying Object-Oriented Technology in Real-Time

Systems with the OCTOPUS Method,” in Proceedings

of First IEEE International Conference on Engineering

of Complex Computer Systems, November 1995,

page(s)306-309.

[18] Chidamber, S., Kemerer, C., "A Metrics Suite for

Object Oriented Design". IEEE Transactions on

Software Engineering, 1994, 20 (6), 476-493.

[19] A. Burns and A.J. Wellings, “A Structured Design

Method for Hard Real-time Systems, Real time

system, Springer, vol 6 no.1 page(s) 73-114, 1994.

[20] Hassan Gomaa, “A BEHAVIORAL ANALYSIS

METHOD FOR REAL-TIME CONTROL

SYSTEMS”, Control Engineering Practice, vol. no. 1,

1993, page(s) 33-72.

[21] M. Paludetto & S. Raymond, “A Methodology based

on Objects and Petri Nets for Development of Real-

Time Software”, IEEE International Conference on

Systems, Man & Cybernetics, 1993, page(s) 705 to

710.

[22] P. Daponte, and et. Al, “Object Oriented Design of

Measurement Systems,” IEEE Transactions on

Instrumentation and Measurement, December 1992,

vol. 41, no. 6, page(s) 874-880.

[23] K.M Sacha,” Transnet Approach to Requirements

Specification and Prototyping” in Proceedings of

CompEuro '92. 'Computer Systems and Software,

IEEE, 1992, Page(s): 220 – 225.

[24] L. Rollo, “Jackson system development”, IEE

Colloquium on, Introduction to Software Design

Methodologies, 1992, Page(s): 3/1 – 313.

[25] Bran Selic, “ROOM: An Object-Oriented

Methodology for Developing Real-Time Systems” 5th

International Workshop on Computer-Aided Software

Engineering. IEEE, 1992, page(s) 230-240.

[26] Rajeev Alur and David L. Dill, “A theory of Timed

Automata,” in Real Time: Theory in Practice.

Proceedings of REX Workshop, 1991, page(s) 47-73.

[27] C. W. Mercer & H. Tokuda: “The ARTS Real-Time

Object Model,” 11th IEEE Real Time System

Symposium, 1990, page(s) 2-10.

[28] Michael A. Jackson, “A System Development

Method”, Tools and notions for program construction:

An advanced course; Nice 1981; Cambridge

University Press, 1982, pages 1-25.

6/21/2011

