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Abstract: In this paper, effect of fringing filed on the internal stress field of nano cantilever beams is studied using 
homotopy perturbation method. The nano cantilever beam is considered as a distributed parameter model including 
intermolecular forces, electrostatic forces and fringing filed effects. In the modeling of intermolecular forces the van 
der Waals attraction and in the modeling of electrostatic forces, the fringing field effect is taken into account. By 
using the obtained polynomial solution, bending moment and shear force are calculated, for narrow and wide nano 
beams. Results shows that stress resultants enhances as the fringing field increases.  
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1. Introduction  
Micro and nanofabrication processes are 

planar technologies. Therefore, many micro and nano 
devices consist of beams and plates suspended 
horizontally over a substrate. On the microscale, 
suspended beams or plates serve as the active 
component of accelerometers, rate gyroscopes, 
pressure sensors, chemical sensors, electrical 
switches, optical switches, adaptive optical devices, 
resonators, electrostatic actuators, valves, and pumps 
(Mastrangelo, 1993). Conductive cantilever nano-
actuators are one of the common components in 
developing nano-electromechanical system (NEMS) 
switches of nano technology (Ke, 2006). A typical 
form of NEMS actuator is a nano-beam which is 
suspended above a conductive flat ground (substrate). 
Applying voltage difference between the nano-beam 
and the ground plane causes the nano-beam to deflect 
downward and be attracted toward to the substrate. 
The inter-molecular forces significantly influence the 
deflection and internal stresses of nano-beam, at 
nano-scale separations (Soroush, 2010). 

The van der Waals force results from the 
interaction between instantaneous dipole moments of 
atoms. It is significant when separation is less than 
the retardation length (typically below 20 nm) which 
corresponds to the transition between the ground and 
the excited states of the atom (Mastrangelo, 1993). 
The van der Waals force attraction is proportional to 
the inverse cube of the separation and is affected by 
material properties (Israelachvili, 1992) and (Koochi, 
2011). Effect of van der Waals attraction on the 
instability of cantilever NEMS has been investigated 
by previous researchers (Mastrangelo, 1993), 
(Soroush, 2010) and (Koochi, 2011). 

Design of reliable NEMS requires crucial 
knowledge about the mechanical stress field in the 
structure (Jonnalagaddaa, 2008) and (Pugno, 2005). 
If a nano-beam is not strong enough to bear internal 
stresses, it might deform or break under influence of 
electrostatic forces. All lamped models assumed the 
electrostatic and intermolecular forces uniform along 
the beam and therefore could not evaluate the internal 
stress resultants i.e. internal shear force and bending 
moment along the beam (Israelachvili, 1992). 

 The fringing field can highly affect 
electromechnical performance of NEMS (Soroush, 
2010). The present paper considers the effect of 
fringing filed on the internal stress distribution of 
nano-beams in the presence of van der Waals 
attractions. The solutions obtained by homotopy 
perturbation method are compared with numerical 

results. 
 

2. Mathematical model 
Figure 1 shows a nano-cantilever beam, of 

length L with uniform rectangular cross section of 
thickness h and width w. the initial gap between the 
movable beam and the ground plane is g. The 
constitutive material of the nano-cantilever is 
assumed linear elastic and only the static deflection 
of the nano-beam is considered.  

In our previous work we obtained the 
governing equation of nano cantilever beams subject 
to electrostatic and intermolecular forces in non 
dimensional form as follow (Soroush, 2010) 
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subject to the following conditions 
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Fig.1. Schematic representation of a cantilever nano-
beam 

 
where x is nondimensional position along the beam 
measured from the clamped end, prime denotes 
differentiation with respect to x and u is non 
dimensional deflection. in equation (1) α, β and γ 
correspond to the values of Casimir force, applied 
voltage and fringing field respectively. The 
nondimensional constants are (Soroush, 2010) 
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where 21212
0 10854.8  mNc  is the 

permittivity of vacuum, V is the applied external 
voltage, y is the deflection of the beam and X is 
position along the beam. Eeff is the effective Young’s 
modulus which is equal to wh3/12, and I is the 
moment of inertia of the beam cross section 
(Soroush, 2010). 
 
3. Stress resultants 

Design of reliable NEMS requires crucial 
knowledge about the distribution of internal stress 
over the length of the beam. The maximum value of 
shear stress and bending stress at the onset of 
instability are very important as the most critical state 
of stress in the engineering applications. Based on 
Euler beam theory, these parameters can be directly 
computed from stress resultants (Timoshenko, 1987). 
In order to determine critical values of stress 
resultants, we define F and M as the dimensionless 
maximum value of the shear force and bending 

moment at the onset of instability, respectively as 
follows 
 

3
0

eff

F L
F

E Ig
     (3) 

 
2

0

eff

M L
M

E Ig
     (4) 

 
where F0 and M0 are shear force and 

bending moment at the cross-section of the beam 
fixed end (x=0). By these definitions, M and F equal 
to u″ (x=0) and –u″′ (x=0), respectively (Timoshenko, 
1987).  

   
 

4. Analytical Solution 
To convey the idea of the homotopy perturbation 
method, we consider a general equation of the type 
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where O is an integral operator. We construct a 
convex homotopy structure H(u,p) as follows: 
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where L(u) is a functional operator with easily 
determined solutions v0. It is clear that H(u,0)=L(u) 
and H(u,1)=O(u). This shows that H(u, p) 
continuously traces an implicitly defined curve from 
a starting point H(v0,0) to a solution H(f,1). The 
embedding parameter increases monotonically from 0 
to 1 as L(u)=0 continuously deforms into the O(u)=0. 
The homotopy perturbation method employs the 
embedding homotopy parameter p as an expanding 
parameter to obtain 
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The best approximation for solution is 
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Series (8) is convergent for most of the cases. A 
comparison of like powers of p gives appropriate 
solutions at various orders. 
 
Integrating the Eq. 9(a-d), we get the following 
system of integral equations: 
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Using relations (7) in Eq. 9(a-d), we have 
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The function nk , , which approximates the nonlinear 

term 
n

ky 
, is determined by Taylor series using Eq. 

(11) (Koochi, 2011).  
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 Therefore, the polynomial solutions for F and M are 
obtained which can be summarized to 
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In the following text all results are 
calculated from eight terms of obtained Adomian 
polynomials. 

 
5. Results 

In order to verify the convergence of 
obtained series, the deflection of a typical nano-
actuator is computed analytically and the solutions 
are compared with the numerical results those from 
(Soroush, 2010) in table 1. Figure 2, figure 3 and 
figure 4 are show the effects of fringing field for 
β=0.2 on F, M and cantilever tip deflection 
respectively. As seen, fringing field increases F and 
M of the cantilever.  

 
6. Conclusion 

Internal stress field of nano-cantilevers were 
computed using homotopy perturbation method. It is 
found that the intermolecular forces increase 
maximum shear force and bending moment at 
constant voltages. Intermolecular forces also, 
increase tip deflection of cantilever beams. Results 
shows that stress resultants enhances as the fringing 
field increases. 

 
Table 1. The variation of the tip deflection of a 
typical beam obtained using different selected terms 
of homotopy perturbation series for α=0.3, β=0.2 , 
and g/w = 1 

Terms Tip Deflection 

6 Terms 0.0986 

7 Terms 0.0870 

8 Terms 0.0940 

9 Terms 0.0886 

10 Terms 0.0922 

11 Terms 0.0898 

12 Terms 0.0915 

Numerical 
0.0908 in 
(Soroush, 2010 ) 
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Fig.2. Effect of fringing filed and intermolecular 
force on the shear force at the fixed end of cantilever 
nano-beam when β=0.2 

 

 
Fig.3. Effect of fringing filed and intermolecular 
force on the bending moment at the fixed end of 
cantilever nano-beam when β=0.2 
 

 
Fig.4. Effect of fringing filed and intermolecular 
force on the tip deflection of cantilever nano-beam 
when β=0.2 
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