
Journal of American Science, 2011;7(7) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org

440

Optimising Client Side Data Entry Process

Nkechi ACHARA1, BSc. and Nnorom ACHARA2*, PhD.

1Credit Suisse, Fixed income 2L Support, KVFS62, Uetlibergstrasse 231, 8070 Zurich
2MDPGA, Ministry of Defence, Wethersfield, Braintree, United Kingdom

* nnoromeluwa@btinternet.com

Abstract: Loss of data during data entry either by crashing or freezing is a common problem encountered in
database data insert especially when there are many rows and columns of data to deal with and also when it is
not appropriate to bind the data directly to the database. Techniques used in inserting data to the database
include bulk load, row by row looping and the use of dataset together with data adapter. The dataset and
looping techniques have been studied by comparing the time for data insertion. From the results it is
concluded that the dataset technique should be used when the number of rows and columns grow beyond a
threshold and below this threshold the row by row data insertion method marginally performs better.
Journal of American Science 2011;7(7):440-444]. (ISSN: 1545-1003). http://www.americanscience.org.

Key Words: Dataset, Data adapter, AJAX, OPENXML, Bulk load, Constraint, Data integrity, Primary key.

1. Introduction
 Many data entry personnel may have
encountered data loss after clicking to save the entry.
These encounters occur most often in an environment
such as creating duty roster and other places where,
as a result of data validation, the best practice dictates
that all entries must be made before saving to the
database. As the data rows grow in number, clicking
the save button may frustratingly result in the
application crashing by “hanging” instead of saving
to the database. Whenever a situation like this arises,
the data entry personnel may resort to “killing” the
session by resetting thus losing the work done so far
or wait for the system to resolve the problem at its
own choosing. The latter option is extremely a time
consuming exercise. Resetting and losing all the data
may be acceptable where only few records are
involved but not where the lines run in hundreds.
This situation is relevant in applications where the
data at entry is not directly bound to the database.
There are situations where it may not be advisable to
directly bind the data to the database and these
include where data validation is top of the priority list
and roster systems. Depending on the circumstance,
the integrity of data may be compromised if the data
is directly bound to the database and so open the
database to corruption. In roster systems, before
saving to the database, the roster manager needs to
have full visibility of all data relating to the duty date
so as to enable him juggle and reconcile staff
qualifications, skills and experience to match the
tasks available for the day.
 The majority of work on database performance
is on the server side, hardly can one find any work on

the client side where it is possible to lose hours of
work if the system failed to save when required.
Some of the approaches to optimisation of the server
side include normalisation with the aim of keeping
table indexing to a minimum, use of cursor and to a
lesser extent, set theory. Even with the arrival of
inexpensive storage devices, organisations would still
have to guard that data does not grow in an
exponential manner and also ensure that there is no
loss in database performance. Others commission
optimisation studies in order to have that extra edge
over competitors.
 Literature on client side performance is sparse.
The few studies (Shah, 2007) on client performance
focus their measurements on such issues as reducing
the number of web pages by combining HTML pages
with CSS files. Another technique found in the
literature is the use of asynchronous processing to
reduce full page reload and round trips to the
database. In an asynchronous application response
time is enhanced by the use of partial page reload
which is essentially what happens with AJAX web
application. Also found in the literature on client side
performance is measurement studies where the focus
is on memory usage reduction. (Koechley, 2007)
discusses ways of improving web page retrieval
including the removal of duplicate scripts and
keeping AJAX cacheable. (Theurer, 2007 and 2011)
investigated in experiments to find that it takes more
than double the time to load all the cookie
components on first visit to the server from the client
side compared with subsequent visits. In another
experiment Theurer showed that the time for cookie
retrieval from the server to a page on the client side

Journal of American Science, 2011;7(7) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org

441

depends on the size of the page. The study found that
retrieval time doubled when the page size changed
from empty to 3kb. In his own study for pages with
many small objects, (Hopkins, 2011) investigated
how HTTP client site implementation affects page
load time. But for (Achara, 2009) where results
varied widely and there was no much effort to handle
the resulting spikes, there is virtually no studies
found on ways to handle data insertion to the
database as the size of data grows.

 2. Data Entry Methods:
 There are various techniques of inserting data to
the database but it is useful to know which method is
most appropriate for use in each given situation.
With the right method chosen, the database data entry
process will benefit and the data insertion time
optimised. Some of the methods used to insert data
into a database include: batch insert, bulk load,
traditional row-by-row looping and the use of the in
memory dataset together with the data adapter.

2.1 XML Bulk Load:
 XML Bulk Load is a stand-alone COM object
that allows the user to load semi-structured XML data
into database tables. XML data can be inserted into a
database by using the INSERT statement and the
OPENXML function. The Bulk Load Utility
provides better performance when inserting large
amount of data. Because the XML source document
can be large, the entire document is not read into
memory for bulk load processing. Instead, XML
Bulk Load interprets the XML data as a stream. As
the utility reads the data, it identifies the database
table(s), generates the appropriate record(s) from the
XML data source, and then sends the records, in the
case of MS database, to the SQL Server for insertion
(MS Library, 2010). XML Bulk Load can operate in
either a transacted or a non-transacted mode.
Performance is usually optimal when bulk loading in
a non-transacted mode by setting the transaction
property to false and either the tables to be bulk
loaded are empty or have unique indexes. Once in
the database, it is memory intensive if the
requirement, as in this study, is to convert the XML
dump data to appropriate data type.
 Oracle has also implemented bulk load utilities
as a UNIX-level command which is issued directly
from the UNIX shell (Oracle, 2010).

 2.2 Dataset:
 The dataset is an in-memory cache of data
retrieved from a data source for example database
(MS Library, 2011). The dataset is an important

component of the ADO.NET architecture. The
dataset may also be considered as a collection of
data-table objects that use the data-relation objects to
interact with one another. Data integrity can be
enforced on the dataset using the unique constraint,
primary and foreign key objects. Navigation between
the data-tables in the dataset is achieved through
data-relation objects. The dataset can read and write
data schema as XML documents. The data and
schema can then be transported across
HTTP and used by applications on any platform that
is XML enabled.
 The dataset has the ability to differentiate
between Insert, Delete and Update queries. It uses
the row-state property to decide what action to take.
The row-state can be “Deleted”, “Modified”, “New”
and “Unchanged”. The data adapter is the bridge
between the dataset and relevant table in the database.
For each query to work, there must be a primary key
defined. Each data-table in the dataset should come
from one database table. If there is the need to return
or save data from or to different database tables, then
a data-table collection with each data-table object
created from each of the relevant database tables may
be used. The dataset can be manipulated using the
data-column, the data-row, constraint and data-
relation.

2.3 Looping Method:
 In the looping process each row of the record is
dealt with one after the other and it is the most
common and traditional method of inserting and
saving data originating from tabular controls to the
database. This technique is known to lead to
performance drop as the number of rows on the table
grows. Some application developers resort to batch
operation by looping through a smaller number of
rows in each insertion round. Under this walk
around, the application may not crash but could lead
to more-complex coding for the developer and
overall, longer processing time since the cumulative
time will be the sum of all the time for each server
trip, the time taken to reposition the cursor after each
batch operation and the associated time overhead.
Some application developers favour the row by row
looping method arguing that it gives the developer
more scope to control the data insertion process.
 The purpose of this study is to compare the data
insertion time to the database between the looping
method and the in memory dataset particularly as the
number of rows and columns in the database table
grow and recommend which method to adopt in any
given situation.

Journal of American Science, 2011;7(7) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org

442

3. Resource Requirement and Method
 The laptop used in this study has the following
features:

a. CPU: Intel (R) Core(TM)2 Duo
P8600 @ 2.4GHz

b. RAM: 4GB
c. Hard drive: 283GB with 184GB

free space.
d. OS: Windows Vista 32-Bit

 Test database: SQL Server 2005 Express

relational database.
 A test database was designed and built using MS
SQLServer 2005 Express running on a standalone
development laptop
 For a given number of rows and columns the
times for data insertion in the database using the
looping and dataset techniques were measured and
recorded. The influence of rows was studied by
fixing the number of database fields (columns) and
varying the row number. Similarly, the effect of
columns was studied by keeping the row constant and
putting the variation on the number of fields.
 The application is web based and runs on
Microsoft .NET2 framework and the code is written
in VB/C##. In each run, the application records and
displays on the screen the times just immediately
before and after the data insert as well as the time
difference. Even though in real life the user will
enter the data on the key board, for the purpose of
this study, to save time on typing, the data was code
generated. This does not however in any way affect
the results.

4. Result and Discussion
 In the course of running the test, it was observed
that there was a tendency for results obtained from
runs conducted using the same number of rows and
columns to produce spikes and thus vary widely. It
was therefore decided, for a given number of rows
and columns, to run the application for at least eight
times and average the values. Consequently, the time
plotted for each row in figures 1 to 4 below is such
averaged values.
 Figure.1 is the result of data insertion to the
database using the looping technique plotted on time
against number of rows for given number of columns
(fields) in the database table.

Figure.1 Time for Data Insert by Looping

0

1000

2000

3000

50 400 1000 1600

No of Rows

17col

13 cols

10 cols

 Figure.2 is the result of data insertion to the
database using the dataset technique plotted on time
against number of rows for given number of columns
(fields) in the database table.

Figure.2 Time for Data Insert by Dataset

0

1000

2000

3000

50 200 600 1000 1400 1800

No of Rows

T
im

e
 (

m
s

)

17 Col

13 Col
10 Col

 Figure.3 is the result of data insertion time
comparison between the looping and the dataset
methods for a database table having 10 columns.

Journal of American Science, 2011;7(7) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org

443

F igure .3 D ataset and Lo oping

C o mpariso n, 10 Co lumns

0

500

1000

1500

2000

2500

50 200 600 1000 1400 1800

No o f Rows

Dat aset

Looping

F igure .4 D ataset and Lo o ping C o mpariso n,

17 C o lumns

0

1000

2000

3000

50 200 600 1000 1400 1800
No o f Rows

Dataset

Looping

Figure. 4 is the result of data insertion time
comparison between the looping and the dataset
methods for a database table having 17 columns.
 In figure.1 and figure.2, the time for insertion
for any number of rows increases with increasing
number of columns in the database table. Similarly
for a given column in these two figures, the time for
insertion increases with increasing number of rows.

In figure.1 specifically, the time for data insertion
between the plots for database table of 13 columns
and a table of 17 columns can hardly be distinguished
but the 13 columns plot is still marginally below the
17 columns plot. The time to insert data to the
database in the 10 columns plot is however well
below the other columns. In figure.2, below 400
rows the time for insertion for the database table of
17 columns plot falls below those of the table with 13
columns and 10 columns plots. This is not the trend
that would be expected but it is thought that this is
caused by the fixed overhead in using the dataset
technique. This fixed overhead, it would appear,
determines the time taken in saving the data when the
row number is low. The result also appears to
suggest that the time is independent of column
number within this region.
 In figure.3 and fig.4 the looping data insertion
method to the database is compared with the dataset
technique for given number of columns. On the
whole, in each of the two figures, the time for
insertion increases with increasing number of rows.
In figure.3 which is plotted for a database table with
10 columns, below 1100 rows the dataset method
performance is worse than the looping method. This
may be attributed to the fixed overhead which is
independent of any of the variables involved. Still on
figure.3, above 1100 rows, the dataset data insertion
method out performs the looping technique. In
figure.4 which is plotted for a database table with 17
columns, below 500 rows, the looping method
performs better than the dataset data insertion
method. The fixed overhead may also offer an
explanation for this behaviour. Above 500 rows in
figure.4, the dataset database data insertion method
once more performs better than its looping
counterpart.

 5, Conclusion:
1. Two database data insertion methods, the looping

and the dataset have been compared.
2. For a given number of database table columns,

below a threshold of rows, the looping method
marginally performs better than the dataset
technique.

3. For a given number of table columns, above a
threshold of rows, the dataset database data
insertion method out performs its looping
counterpart. This is the region in the data entry
system where data entry personnel encounter
data loss due to crashing.

4. The experiments have shown that the dataset
method performs better as the number of rows as well
as columns grows and therefore under conditions

Journal of American Science, 2011;7(7) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org

444

similar to this study, the dataset method should be
employed when dealing with high number of rows
and table columns.

6. References:
1. Shah, A., Client Side Web Site Performance,

Retrieved from Onenaught.com, August 2007.
2. Koechley N, High Performance Web Sites,

@Media Conference, London, 2007
3. Tenni Theurer, Perfornance Research Part 2: The

Cache Browser – Exposed, www.onenaught.com,
2007.

4. Tenni Theurer, Perfornance Research Part 3: The
Cache Browser – Exposed, www.onenaught.com,
Retrieved 2011.

5. Aaron Hopkins, Optimising Page Load Time,
www.die.net/musings/page_load_time, Retrieved
2011.

6. Nkechi Achara, Project for Partial Fulfilment for
the Award of the Degree of BSc Computer Science,
University of Hertfordshire, Hartford, 2009.
7. Microsoft Library, Introduction to XSD Schemas

(SQLXML 4.0), Retrieved from
www.msdn.microsoft.com/en-us/library, 2010.

8. Oracle Bulk Loader Overview, Retrieved from
http://infolab.stanford.edu/~ullman/fcdb/oracle/or
-load.html#overview#overview, Retrieved 2010.

9. MS Library, Retrieved from
http://msdn.microsoft.com/en-
us/library/system.data.dataset(v=vs.71).aspx,
2011.

5/29/2011

