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Abstract: The problem of fault detection of the π-model induction motor with magnetic saturation is considered in 
this paper. In this paper we use a new technique which is the Adaptive Neuro Fuzzy Inference Systems (ANFIS) 
technique for online identification of the different motor fault conditions. A simulation study is illustrated using 
MATLAB simulink depending on stator currents measurement only for online detection of the motor faults. The 
proposed technique shows promising results using the simulation model. 
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1. Introduction: 

In the last decade, a tremendous development 
in the theory of nonlinear control has been achieved. 
The common assumption made in the development of 
these control laws is the linearity of the magnetic 
circuit of the machine. This assumption is usually 
justified by including the flux magnitude in the 
outputs to be regulated by the controller and keeping 
this magnitude regulated at a value far from the 
saturation region. However there are no guarantees 
that the flux magnitude remains in the linear 
magnetic region during machine transients. Moreover 
in many variable torque applications, it is desirable to 
operate the machine in the magnetic saturation region 
to allow the machine to develop higher torque [1] and 
[2]. Saturation effects are also known to be 
pronounced in drives operating in the field 
weakening region, or in drives that operate with 
varying flux levels to achieve optimally in a specified 
sense [3]. However, the operation of the motor at 
various magnetization levels makes the nominal 
inductance a bad approximation. Recently, 
researchers have been attracted to induction motor 
control with magnetic saturation. Feedback input-
output linearization schemes for induction motors 
with magnetic saturation were proposed in a fixed 
stator frame [4] and in a synchronously rotating 
frame [5]. While in [4] the control signal is the stator 
voltage, but in  [5] it is the stator current. Both papers 
treat the T-model of an induction motor. 
Unfortunately, due to the complicated nature of the 
T-model, drastic simplifications are required to 
facilitate the use of this model in nonlinear control 
synthesis. The major drawback in [4] (also present in 
the optimal flux reference selection of [5]) is the 
assumption that the stator and rotor leakage 
parameters σs and σr,  as defined by W. Leonard in  
[6], are equal and constant. This assumption has the 
indirect effect of neglecting any cross-saturation 

effect that might appear in the dynamics of the motor. 
On the other hand, the model in [5] is obtained by 
firstly simplifying the motor equations assuming a 
linear magnetic circuit and then including a mutual 
inductance that varies with mutual current. This 
approach does not include derivatives of the 
saturation function that should appear in a complete 
model which was driven by Gokdere in [7]. A similar 
modeling approach can also be found in [8] for 
incorporating magnetic saturation in the passivity-
based control design methodology appears in the 
work of H. A. Abdel Fattah and K. A. Loparo that 
was proposed in  [9]. It is worth pointing out that the 
work published in  [8] similar to [5] that  stator 
currents are used as the control signal. All the work 
presented so far is based on a T-model of the 
induction motor, contrary to the π-model  proposed in 
[1]. The π-model differs from the conventional T-
model in that it is more closely related to the physical 
structure of the machine, since its derivation is 
primarily based on the stator-rotor tooth pair 
magnetic circuit. Even though the work in [1] is 
based on a wound rotor motor, it is shown in the 
same paper how the modeling approach can be 
applied to a squirrel cage motor. It is not difficult to 
show that both models are equivalent when a linear 
magnetic circuit is assumed, this equivalence does 
not hold when main flux saturation is included. In the 
published work of H. A. Abdel Fattah and K. A. 
Loparo as in [10]. It was shown that considering 
magnetic saturation explicitly in nonlinear control 
synthesis is of foremost importance especially when 
the machine is voltage actuated. Because the π-model 
was experimentally found in [1] to be better suited to 
capture the nonlinear magnetic effects. E Levi have 
designed a simplified saturated model of induction 
motor that was proposed in [11].   

Many techniques are performed for detection of 
the motor faults [12] to [29]. The previous procedure 
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are deal with the linear model of the induction motor 
and deal with the online diagnostics of the motor 
fault detection , from the previous work we find that 
many factors are lead to motor faults such that 
bearing faults induce 40% of the motor faults  , 38% 
are due to the stator winding , 10% are due to rotor 
faults and 12% other faults  ,the new in this paper that 
the saturated model of induction motor is considered  
and the fault conditions are performed using 
simulation model in matlab simulink.    
 
2. Induction Motor Saturated Model  

The main results of the dissertation on 
induction motor control under magnetic saturation 
will be based on the  π- model. The π-model for the 
complete motor, at zero speed, is shown in Figure (1). 
The two phase electrical equations for an induction 
machine in an arbitrary frame rotating with speed 
(ω0) are given by: 

DC
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Figure (1):  Induction Motor π- Model 
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(1)     

Where; Vs is the stator phase voltage vector, Is is the 
stator phase current vector, Ir   is the rotor phase 
current vector, p is t he number of pole pair s, 
ω is the rotor speed, Rs is the stator phase resistance, 
Rr is the rotor phase resistance, Ψs and Ψr are the 
stator and rotor flux linkage vector s respectively. 
Equation (1) holds whether the induction motor 
magnetic circuit is considered linear or saturated and 
J2 is the 2 × 2 rotating matrix defined by; 

J2 = [0 −1; 1 0]                                    (2) 
The mechanical equation can be expressed as: 

T LTb
dt

d
J  



                          (3) 
Where J is the motor inertia, b is the viscous 

damping, TL is the load torque and T is the generated 
torque. The relationship between the currents and the 
fluxes for the π model at d-q frame rotating with 
speed (ω0) are given by: 
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Where gl is defined as: 
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 Where Gs and Gr are the stator and rotor vector-
valued nonlinear functions and defined as: 
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Where; Im and Ψm are the mutual current 

and flux vector, respectively, and subscript (x) can be 
(s) for stator and (r) for rotor. The relationship 
between the currents and the fluxes for the   π model 
can be compactly written as: 
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Where; I2 is the 2 × 2 identity matrix,  gl is defined as 
the reciprocal of the leakage inductance ( Ll), gs and 
gr are the stator and rotor vector-valued nonlinear 
saturation functions. The scalar saturation functions 
gs and gr only affect the magnitude, while keeping 
the directions of the fluxes and currents the same. 
These functions are monotone increasing and are non 
zero at the origin. The saturation functions gs(x) and 
gr(x) have to be identified experimentally for each 
motor as shown in the next section. 

Finally, the generated torque (T) and p is the 
poles number is given by; 
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3. Fault Detection Using Anfis 
The new in this paper is the online detection of 

the motor fault conditions using ANFIS technique. 
The induction motor monitoring diagnosis techniques 
such that magnetic flux, vibration, stator currents, 
induced voltage, power and surge testing are used for 
detection of the motor faults. 

Stator current signal are contains potential fault 
information and is the most suitable measurements 
for diagnosing the faults under consideration, in term 
of easy accessibility, reliability, and sensitivity. A 
simple construction using stator current for motor 
fault detection is indicated in figure1, the linguistic 
variables of the induction motor stator conditions are 
shown in figure 2.   
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Fig 1 Block diagram of induction motor condition 

monitoring system  
 

 
Fig2   Linguistic variables of the induction motor 

stator condition. 
 
The fault condition that taken in consideration 

using stator current measurement   in this paper will 
be  
1- Line to ground fault of the motor supply voltage  
2- Line to line fault of the motor supply voltage  
3- One phase is lost of the motor supply voltage  
4- Short circuit occur in the stator winding of the 

induction motor ( Rs=0) 
5- Short circuit occur in the rotor winding (Rr=0)   
 
A. Neuro Fuzzy Controller 

During the past three decades, fuzzy logic has 
been an area of heated debate and much controversy. 
The first implementation of Zadeh’s idea was 
accomplished in 1975 by Mamdani, which 
demonstrated the viability of fuzzy logic control 
(FLC) for a small model steam engine. After this 
pioneer work, many consumer products as well as 
other high technical applications have been 
developed using fuzzy technology. 

A list of industrial applications and home 
appliances based on FLC can be found in several 
recent references [30]  to [36].  However, the design 
of a FLC relies on two important factors: the 
appropriate selection of knowledge acquisition 
techniques, and the availability of human experts. 

These two factors subsequently restrict the 
application domains of FLC. In this paper, the 
application of Adaptive Neuro Fuzzy Inference 
Systems (ANFIS) is presented to overcome such 
restrictions. 

An adaptive neuro -Fuzzy Inference System 
(ANFIS) is a cross between an Artificial Neural 
Network (ANN) and a fuzzy inference system (FIS). 
An artificial neural network is designed to simulate 
the characteristics of the human brain and consists of 
a collection of artificial neurons. An adaptive 
network is a multi-layer feed-forward network in 
which each node (neuron) performs a particular 
function on incoming signals. The form of the node 
functions may vary from node to node. In an adaptive 
network, there are two types of nodes, adaptive and 
fixed. The function and the grouping of the neurons 
are dependent on the overall function of the network. 
Based on the ability of an ANFIS to learn from 
training data, it is possible to create an ANFIS 
structure from an extremely limited mathematical 
representation of the system. In sequel, the ANFIS 
architecture can identify the near-optimal 
membership functions of FLC for achieving desired 
input-output mappings. The network applies a 
combination of the least squares method and the back 
propagation gradient descent method for training FIS 
membership function parameters to emulate a given 
training data set. The system converges when the 
training and checking errors are within an acceptable 
bound. The ANFIS system generated by the fuzzy 
toolbox available in MATLAB allows for the 
generation of a standard Sugeno style fuzzy inference 
system or a fuzzy inference system based on sub-
clustering of the data. Figure 2 shows a simple two-
input ANFIS architecture. The above ANFIS 
architecture is based on a Sugeno fuzzy inference 
system. The Sugeno FIS is similar to Mamadani 
format except the output memberships are singleton 
spikes rather than a distributed fuzzy set. Using 
singleton output simplifies the defuzzification step.  

 

 
Figure (2): ANFIS Architecture for a Two-Input 

System 
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The ANFIS network shown in Figure (2) is 
composed of five layers. Each node in the first layer 
is a square (adaptive) node with a node function. The 
basic diagram computation in ANFIS is sown in 
Figure (3). This structure contains the same 
components as the FIS, expect for the NNblock. The 
structure of the network is composed of a set of units 
(and connections) arranged into five connected 
network layers, via., l1 to l5 as shown in the Figure 
(4).  
 

 
 
Figure (3): Basic Diagram Of ANFIS 
Computation 
 
Layer 1: This layer consists of input variables 

(membership functions), via., input 1 & input 2. 
Here, triangular or bell shaped MF can be used. 
This layer just supplies the input values x to the 
next layer, where i= 1 to n. 

Layer 2 : This layer (membership layer) checks for 
the weights of each MFs. It receives the input 
values x from the 1st layer and act as MFs to 
represent the fuzzy sets of the respective input 
variables. Further, it computes the membership 
values which specify the degree to which the 
input value x belongs to the fuzzy set, which 
acts as the inputs to the next layer. 

Layer 3 : This layer is called as the rule layer. Each 
node (each neuron) in this layer performs the 
pre-condition matching of the fuzzy rules, i.e., 
they compute the activation level of each rule, 

the number of layers being equal to the number 
of fuzzy rules. Each node of these layers 
calculates the weights which are normalized. 

Layer 4 : This layer is called as the defuzzification 
layer and provides the output values y resulting 
from the inference of rules. Connections 
between the layers l3 and  l4 are weighted by 
the fuzzy singletons that represent another set 
of parameters for the neuro fuzzy network. 

Layer 5 : This layer is called as the output layer 
which sums up all the inputs coming from the 
layer 4 and transforms the fuzzy classification 
results into a crisp (binary). The ANFIS 
structure is tuned automatically by least-square 
estimation as well as the back propagation 
algorithm. The algorithm shown above is used 
in the next section to develop the ANFIS 
technique to control the various parameters of 
the induction motor. Because of its flexibility, 
the ANFIS strategy can be used for a wide 
range of control applications. 

 
B. ANFIS Design for motor fault detection 
conditions 

The main purpose of using  ANFIS 
controller in this paper  is for identification of the 
fault occurrence in the  saturated model of induction 
motor.  The ANFIS controller structure is shown in 
Figure (4) . The fuzzy logic membership functions 
for the input and output  are turned using neural 
network method which is well known in MATLAB 
program as ANFIS structure. The parameters are 
selected such that, optimization method is hybrid, the 
membership function is gbellmf , the membership 
function output is linear , error tolerance was chosen 
to be  0. 01 , the no of epochs are 1000 , grid 
partitions  , the inputs of the grid partitions are  the 
number MFS  are 3 , MF   type is  gbellmf , the 
outputs is  MF type defined to be constant  . The 
motor parameters that used in simulation are shown 
in table 1.  
 
Table 1 motor parameters 
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Fig 4   Fault detection controller  using ANFIS  
 
I. SIMULATION RESULTS 

Using the saturated model of induction motor 
with the parameters in table 1 , the applied supply 
voltage are  :Ua =380 sin (2п 50 t) ,  Ub= 380 sin (2п 
50 t - 2п/3)  , Uc= 380 sin (2п 50 t + 2п/3)  the  
simulation duration is 20 second .  
 The fault conditions are performed using simulation 
and by using the ANFIS programming, the controller 
will detect that there is a fault occurrence to the 
motor during the operation. The controller will also 
state which type of fault in each case.   
 
Simulation1  

Start the simulation of the motor by 
performing the different fault conditions stated before 
and plotting the effect of the faults on the measured 
signals of the stator currents. The result of the 
simulation is indicated in figures (5) to (12). 
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Fig 5  Stator current Isa in case of one phase is lost  

or line to ground fault of the motor supply   
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 Fig 6  Stator current Isb in case of one phase is 

lost or line to ground fault of the motor 
supply   
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Fig 7  Stator current Isa in case of line to line fault 

of the motor supply 
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Fig 8  Stator current Isb in case of line to line fault 

of the motor supply 
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Fig 9   Stator current Isa in case short circuit in 

the stator windings 
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Fig 10   Stator current Isb in case short circuit in 

the stator windings 
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Fig 11   Stator current Isa in case short circuit in 

the rotor windings 
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Fig 12   Stator current Isb in case short circuit in 

the rotor windings 
 
 

Simulation 2  
Using ANFIS controller to detect online the 

type of fault that occur to the induction motor as 
follows: 

Item Type of fault ANFIS output 
1 One phase loss or line to 

ground fault 
0-0.5 

2 Line to line fault 1-1.5 
3 Short circuit in the stator 

winding 
2-2.5 

4 Short circuit in the rotor 
winding  

3-3.5 

 
We start the simulation in normal conditions 

with line voltage 380V then and reducing the voltage 
magnitude of the supply voltage  at 5 second  to 220 
V then at 10 second the supply voltage will be 110V 
then we perform a line to ground fault at 15 seconds 
and the result of the ANFIS controller is shown in 
figure (13) 
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Fig 13   ANFIS output in case line to ground fault  
 

Next we start the simulation in normal 
conditions with line voltage 380V then and we 
perform a line to line fault at 10 seconds and the 
result of the ANFIS controller is shown in figure (14) 
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Fig 14   ANFIS output in case line to line fault  

 
Next we start the simulation in normal 

conditions and the stator resistance is reduced from 8 
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ohm to 4 ohm at 5 seconds and to 3 ohm at 10 second 
then  we perform a short circuit in stator winding at  
15 seconds and the result of the ANFIS controller is 
shown in figure (15) 
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Fig 15   ANFIS output in case of stator winding 

short circuit  
 
Finally we start the simulation in normal 

conditions and the rotor resistance is reduced from 6 
ohm to 3 ohm at 5 seconds and to 2 ohm at 10 second 
then we perform a short circuit in rotor winding at 15 
seconds and the result of the ANFIS controller is 
shown in figure (16) 
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Fig 16   ANFIS output in case of rotor winding 

short circuit  
 
4. Conclusion  

The new in this paper is using ANFIS technique 
for detection of the induction motor different fault 
conditions. This paper is different from the previous 
work that we are using ANFIS controller for 
detection of the supply voltage faults as well as any 
short circuit appears in the motor windings. The 
percentage of the fault is appear in the ANFIS 
controller output so we can early detect any failure 
start in the motor winding for predictive maintenance  
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