Effect of Osmo-Dehydration on the Rehydration Properties Structural Aspects and Antioxidant Activity of Banana and Tomato Rings

Gamal. H. Ragab, Mostafa T. Ramadan, Hesham. A. Moharram* and Hatem. S. Ali
Food Technology, Dept., National Research Centre Dokki, Cairo, Egypt

Abstract: The objectives of this research were mainly directed towards microstructure and the influence of different osmotic solutions on the rehydration capacity. In banana rings, it is indicated that using sucrose: glucose as an osmotic solution with different concentration gave the highest rehydration ratio. Regarding tomato, the osmosed solutions were different concentrations of NaCl and NaCl: Sucrose; they gave an inversely proportional relationship with rehydration capacity. Antioxidant activity was measured by conjugated diene method, and it is strongly affected by the type of pre-treatments applied. Regarding the microstructure, this study showed important changes in the cell wall cytoplasm and the intercellular spaces.

1. Introduction:
Over the past few years, consumers, have increasingly demanded food products providing, both good sensorial quality and specific nutritional properties. In this issue, a great effort has been made in food technology to adequately posses particular consumer requirements.

Partial dehydration and solute intake can be achieved by immersion in a concentrated aqueous solutions, this process is called osmotic dehydration (Lazarides et al., 1999) by modifying the extent of the partial dehydration and syrup composition; not only the end product be diversifed but chemical, physical and functional properties can be improved (Torregiant and Bartelo, 2001). It was found that solute loss during rehydration is increased due to structural changes induced by osmotic pretreatments and interaction of the osmo-active substances with the cell components.

Osmotic dehydration of banana rings and tomato halves; can be carried out as a means of pre-drying treatment (Ali et al., 2010). It was found that desirable functional properties can be obtained.

During rehydration, absorption of water into the tissue results in an enhancement in the mass, simultaneously leaching out of solutes (sugars, acids, minerals, vitamins) occur and both phenomena are influenced by the nature of the product and conditions analyzed for rehydration (Korkida and Marinos-Kouris, 2003). Rehydration kinetics can be applied to ascertain the net extent of injures and other processing step prior to it (Restogi et al., 2000). A solute loss during rehydration is enhanced due to structural changes induced by osmotic pretreatments and interaction of the osmo-active substances with the cell components.

Rehydration is influenced by several factors grouped as- intrinsic factors (chemical composition, pre-drying treatment, product formulation, drying techniques and post drying procedure, etc) and extrinsic factors such as: (composition of media used -hydrodynamic conditions (Oliveria and Ilineanu, 1999).

Therefore, this work was carried out to investigate how different osmotic solutions could affect the rehydration properties and structural aspects and antioxidant activity of the osmo-dehydrated banana and tomato rings.

2. Material and Methods
1- Materials
Banana (Musa cavendishii var balady) and tomato (Lycopersicon esculentum L) were obtained from the local market, Giza, Egypt. The tips of the banana were first removed and its medium part, were cut into rings of 1cm length with a knife. Tomatoes were sorted and sliced to an average thickness of 10mm, and each halve was longitudinally cut into two halves.

2- Methods:
Banana rings were subjected to the following osmotic treatments as follows:-
T₁ = 100% sucrose
T₂ = 50:50 glucose: sucrose.
T₃ = 30:70 glucose: sucrose

Tomato halves were also subjected to different NaCl: sucrose combinations (1:1.5). The samples were ranked as follows:

- T₄ : 5% Na Cl
- T₅ : 10% Na Cl
- T₆ : 20% Na Cl
- T₇ : 30% Na Cl
- T₈ : sucrose: Salt 5%
- T₉ : sucrose: Salt 10%
- T₁₀ : sucrose: Salt 20%
- T₁₁ : sucrose: Salt 30%

The experimental procedures were carried out as described by (Ali et al., 2010).

Methods:

1- Microstructure:

Scanning electron micrographs were obtained using scanning electron microscope, Joel JSM-6100 Joel ltd. Tokyo-Japan as described by (Aguilera and Stanely, 1999). These micrographs were taken to investigate the microstructure of Banana rings; osmosed dried with sucrose and glucose solutions. Tomato halves were also osmosed dried with different concentrations of Na Cl and Na Cl: Sucrose.

2- Rehydration Experiments:

Rehydration experiments were carried out as mentioned by (Maskan, 2001). The rehydration was calculated using the following equation.

\[\text{Weight gain \%} = \frac{(w_e - w_d)}{w_d} \]

Where:

- \(w_e \) = weight of the rehydrated samples at any time (g)
- \(w_d \) = weight of the dried sample (g)

The data were expressed as an average of different rehydration time at 0, 30, 60, 90, 120 and 180 mins.

3- Antioxidant activity:

The antioxidant activity was measured by applying the conjugated diene method using pure sunflower oil as described by (Lingnert et al., 1989). The \(A_{234} \) min. was taken as an indication of the course of oxidation using untreated Banana rings and tomato halves as a control.

3. Results and Discussion

Osmotic dehydration microstructure:

Figs. (1, 2 and 3) showed the microstructure of the osmosed dried tomato halves and Banana rings, respectively. Those figures showed a disruption of cell walls, covered with cytoplasm. Osmotic treatment of Banana rings and tomato halves caused an important changes in their microstructure levels i.e; cells become, elongated with cell wall, plasma membrane is folded and separated; as quickly as the salt content of the osmotic solution is enhanced; (Tonon et al., 2007). After a certain time a protoplast is released and adapted. a spherical shape, thus reducing the excess of energy associated to the matrix contraction (Barat et al., 1998). Great compacting of the cell structure and disorganization of the protoplasm contents were also observed by (Heredia et al., 2009). Tedjo et al. (2002) suggest that different pretreatments caused different cell poration, which suggests that the mechanisms of cell permeability by the different pretreatments are not the same.

Changes that occurred in Tomato and Banana after osmotic dehydration showed a net like pattern of the intercellular spaces which is no longer distinct and it appears as if these intercellular have been filled with the osmotic solution; which indicated that, there was an accumulation of sugars on the periphery of the fruit, also it is suggested that as the solid gains were enhanced with osmotic dehydration time, the thickness of the sugar layer increased and the viscosity of such layer is getting higher which retards the diffusion of water through this layer into the osmotic solution.
Influence of osmotic pretreatments on the rehydration capacity

The weight gain of the rehydrated banana rings and tomato halves samples were shown in tables (1, 2 and 3). As the sucrose levels are getting lower; an enhancement in the rehydration capacity was observed; specially when using glucose as a synergistic osmotic solution; an enhancement in the rehydration capacity was observed.

It seems that the lower concentration of sucrose pretreatment might take part in importing structural and mechanical strength to the tissues (Lewicki et al., 2005). Sugar protects the functionality of protein; stabilizing its three dimensional structure; attributed to an enhancement in hydrophobic interactions and hydrophilic properties due to the formation of protein-sugar complex.

Lesile et al. (1995) reported that disaccharides maintain the general protein structure in dry state; hence the membrane is protected and upon rehydration, its functionality restored.

Regarding tomato, table (2) showed clearly an inversely proportional relationship between the suggested levels of the previously mentioned osmotic solutions used; and the rehydration capacity as a function of different duration time at the stationary phase.

The same effect was noticed when sucrose was used as osmotic solution in addition to NaCl. Increasing the level of salt caused the same effect with somewhat higher rehydration level, these changes could be related to the synergistic effect of sucrose as previously mentioned (Figs. 2,3).

Osmotic dewatering affects the rehydration properties of the dried material, because of cell permeabilization due to osmotic stress and hence upon rehydration, these cells cannot absorb as much as control. At the same time, solute loss during rehydration also enhance that possibility due to the structural changes induced by the osmotic pretreatments and interaction of the osmoactive substances with the cell components (Restogi et al., 2004).

Antioxidant activity:-

Table (4) showed the pattern of antioxidant activity, the highest antioxidant activity was found in 100% sucrose. It seems that at 100% sucrose, the antioxidant activity could be preserved. The data also showed an inversely proportional relationship between NaCl concentration and antioxidant activity, adding sucrose with small levels in 5%, 10% causes a preservative effect. These data are confirmed with those presented by Azoubell and Murr, 2003, Tonon et al., 2008 and Ali et al., 2010, who reported that lower redness value a* could be used as a useful indicator for correlating it with lower a* value.

Table (1): Rehydration of Banana rings as a function of different osmotic solutions.

<table>
<thead>
<tr>
<th>Banana rings rehydration time (min)</th>
<th>0</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% sucrose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30:70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% sucrose 50:50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% sucrose 30:70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

566
Table (2): Rehydration of Tomato rings as a function of different NaCl osmotic solutions.

<table>
<thead>
<tr>
<th>Tomato Halves rehydration time (min)</th>
<th>0</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% NaCl</td>
<td>0</td>
<td>1.246</td>
<td>1.670</td>
<td>2.08</td>
<td>2.561</td>
<td>3.04</td>
</tr>
<tr>
<td>10% NaCl</td>
<td>0</td>
<td>0.909</td>
<td>0.909</td>
<td>1.187</td>
<td>1.811</td>
<td>1.95</td>
</tr>
<tr>
<td>20% NaCl</td>
<td>0</td>
<td>0.531</td>
<td>0.767</td>
<td>0.939</td>
<td>1.108</td>
<td>1.42</td>
</tr>
<tr>
<td>30% NaCl</td>
<td>0</td>
<td>0.501</td>
<td>0.721</td>
<td>0.893</td>
<td>0.969</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Table (3): Rehydration of Tomato rings as a function of different sucrose: salt ratio.

<table>
<thead>
<tr>
<th>Tomato Halves rehydration time</th>
<th>0</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sucrose: salt 5%</td>
<td>0</td>
<td>1.304</td>
<td>1.852</td>
<td>2.111</td>
<td>2.642</td>
<td>3.07</td>
</tr>
<tr>
<td>Sucrose: salt 10%</td>
<td>0</td>
<td>1.347</td>
<td>1.749</td>
<td>2.414</td>
<td>2.134</td>
<td>2.439</td>
</tr>
<tr>
<td>Sucrose: salt 20%</td>
<td>0</td>
<td>0.861</td>
<td>1.136</td>
<td>1.461</td>
<td>1.525</td>
<td>1.726</td>
</tr>
<tr>
<td>Sucrose: salt 30%</td>
<td>0</td>
<td>0.639</td>
<td>0.986</td>
<td>1.112</td>
<td>1.125</td>
<td>1.386</td>
</tr>
</tbody>
</table>

Table (4): Antioxidant activity of Banana and Tomato rings as affected by different osmotic solutions

<table>
<thead>
<tr>
<th>Treatments</th>
<th>samples</th>
<th>$A_{234,nan}$</th>
<th>Antioxidant Activity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>Banana Rings</td>
<td>0.002</td>
<td>0</td>
</tr>
<tr>
<td>100% sucrose</td>
<td>Banana Rings</td>
<td>0.006</td>
<td>83.3</td>
</tr>
<tr>
<td>50:50 Glucose: Sucrose</td>
<td>Banana Rings</td>
<td>0.011</td>
<td>45.4</td>
</tr>
<tr>
<td>30:70 glucose: Sucrose</td>
<td>Banana Rings</td>
<td>0.32</td>
<td>25</td>
</tr>
<tr>
<td>5% NaCl</td>
<td>Tomato halves</td>
<td>0.005</td>
<td>90.5</td>
</tr>
<tr>
<td>10% NaCl</td>
<td>Tomato rings</td>
<td>0.007</td>
<td>71.42</td>
</tr>
<tr>
<td>20% NaCl</td>
<td>Tomato rings</td>
<td>0.007</td>
<td>62.50</td>
</tr>
<tr>
<td>30% NaCl</td>
<td>Tomato rings</td>
<td>0.068</td>
<td>67.50</td>
</tr>
<tr>
<td>Sucrose: Salt 5%</td>
<td>Tomato halves</td>
<td>0.10</td>
<td>67.50</td>
</tr>
<tr>
<td>Sucrose: Salt 10%</td>
<td>Tomato rings</td>
<td>0.010</td>
<td>56.5</td>
</tr>
<tr>
<td>Sucrose: Salt 20%</td>
<td>Tomato rings</td>
<td>0.009</td>
<td>4.5</td>
</tr>
<tr>
<td>Sucrose: salt 30%</td>
<td>Tomato rings</td>
<td>0.009</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Corresponding author
Hesham. A. Moharram
Food Technology, Dept., National Research Centre
Dokki, Cairo, Egypt
moharramhesham@yahoo.com

References

6/1/2011