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Abstract: Multi agent systems (MAS) bring about a change in the globe by making agents work together in a group
achieving common goals and casting away monolithic paradigm. Proper understanding of the metrics that impact
performance of MAS can help in employing the distinctive abilities of agents to its maximum. In this paper, we
discuss various performance metrics that target an agents’ role and environment and can help in accomplishing goals
in optimum time.  We also present an example that takes these performance metrics to account. We then move to
case studies and draw attention to the best and worst cases for agents’ performance against the metrics we gathered
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1. Introduction
Panoptic research in artificial intelligence has

shifted the mode of independent study of fields to
interdisciplinary studies like mixture of cognition,
sociology, psychology, robotics, fuzzy logic,
computation and several other interesting subjects.
This results in better understanding and application of
interdisciplinary theories. Multi agents system is a
product of such rigorous studies. The shining hope in
this arena is brought about by the fact that agents are
autonomous in their nature. Since they encompass the
ability to be decisive for attaining a goal,
performance should not be a hindrance for their task
accomplishment.

In the past apt attention was not given to
defining metrics alone for multiagents. Either
frameworks were suggested for a specific type of
agent or environment or performance was neglected
altogether. We introduce some performance metrics
based on our study and knowledge that should be
catered while construction of MAS.

The objective of this paper is to spot various
performance metrics in accordance to the possible
roles of an agent. Agent role is categorized based on
its environment and functionality expected from it.
An example of RPM is considered that takes the
mentioned performance metrics to account. It shows
how a system can be made efficient if performance
metrics are considered properly. This paper will
provide benefit to designers for designing a MAS
system for any environment. They can determine
which metric can be best applied for maximum
efficiency.

First we will give you a walk through the related
work done on this topic. We then define imperative
performance metrics that we think are important to
consider while designing a MAS. We then shift our

focus to elaborating the performance metrics by
means of an example that fulfils them properly. In the
last we discuss some case studies for best, medium
and worst case scenarios for the defined metrics and
conclude our results.

2. Related Work
A metric is a quantitative measure of the degree

to which a system possesses a given attribute. A
performance metric is thought to be a function of the
optimization of tasks an agent conducts to reach a
goal. It assists an agent to be efficient and effective
on time. Performance metrics are based on
measurable attributes of an agent [1]. Since only
measurable quantities can be controlled and directed,
we can use them for our purpose to enhance
performance and reliability. Agents also have the
clairvoyant ability to improve performance over time
by learning through examples and experiences [2].

A metric allows finding a pattern and trend in an
object’s behavior. In [12], various performance
metrics are defined but they focus on single agents
alone. The combined effect is not discussed. It also
proposes different profiles by combining a set of
single agent metrics to fulfill the need of a specific
type of agent. This approach provides agility but not
basis for a MAS system.

Various factors and variables determine
performance metrics for meeting the performance
requirements of MAS. Researchers have concentrated
on domain specific metrics as discussed. These
include time period for task completion, efficient
interaction between agents, centralized or
decentralized processing, how fast a MAS reacts
when input is provided, relative performance of an
agent with respect to its environment or other agents,
the number of agents a system can bear, the number
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of tasks completed by agents etc [3][4]. These
researchers have discussed only those metrics that
concern or affect the particular system they have
taken up as an example. What they do not define is
the impact of these performance metrics in other
dynamic environments. They also do not indicate
which type of agent is affected by the performance
metrics they are defining.

While designing MAS it is crucial to
identify points where performance delays may occur
and whether or not it is tolerable for the
accomplishment for a global goal. Numerous
conformance tests and performance evaluations may
be conducted to verify these summits [5]. We present
a handful of performance metrics that can be applied
to any MAS system for evaluating its performance in
advance.

3   Imperative Performance Metrics
The pattern followed for bringing to light

distinct performance metrics in this paper is by
discussing various factors that increase usability of
agents in an assortment of scenarios. We then pin
point which metric can be catered best for boosting
performance of an agent in a particular environment
or for a particular agent role.

A) Metrics for Single Agent
a. Number of Agents

The primary indicator for the size of MAS is
the number of agents involved. This factor is directly
proportional to the complexity of the overall MAS.
The more complex a MAS, the more performance
enhancement is required by it. It should be made sure
that the performance enhancement does not create an
extra over head decreasing the performance of overall
MAS [`2].

In a huge MAS grouping of agents is usually
done to suppress the overhead involved in
communicating among groups of agents and within
groups. By and large, the performance of
communicating within a group is immensely
increased.

b. Computational Time for Individual Agent
MAS
An active state of an agent determines its

computational time. The time period for which an
agent conducts its tasks is its active state. In a MAS
we need to know how many agents are active in what
period of time. It is also calculated that how many
agents have an overlapping active state time period.
The number of overlapping computational time
affects the performance of system. The higher it is,
the lower the performance goes.

c. Independent Memory Consumed by
Individual Agent MAS
An agent may require several resources for

executing its tasks. The amount of memory required
by an agent for creating its own objects should be
known in advance to predict the performance of
MAS. Memory is an inevitable constraint for many of
the MAS. The more memory consumed by an agent,
the low the performance of the MAS we get [12].

d. Agent Status
The total number of statuses an agent can

have determines its status set. If the set is huge, it
implies that an agent would go through transition at
least once for all statuses. The transitions required
would be a pure overhead for the system. The less the
transition is required, the more performance we can
get from MAS. The statuses an agent might
commonly require are Active, Wait etc. The number
of switches between these statuses must be less
frequent to increase performance [12].

B) Metrics for Multiagent System
a. Agent Coordination in MAS

Message transport and communication
protocols utilized directly determine the performance
of MAS. These levels comprise of low level to
abstract high level protocols like speech act theories
for message content. A number of platforms are
provided to support such protocols as Java Agent
Development Environment (JADE) and Foundation
for Intelligent Physical Agents Operating System
(FIPA-OS). Coordination protocols employed can be
either hierarchical or mesh structured.

In a homogeneous MAS a complex task is
broken down and then delegated to agents. So this
factor is more of an importance in such an
environment. This is different for agents related to
Mesh and hierarchical structures [12].

b. Fault Tolerance
Fault tolerance is one way to increase the

dependability of agents or applications. It provides
the recovery from service failure when a fault occurs
[6]. Many solutions have been proposed for
introducing fault tolerance in multi-agent systems,
some are of curative nature while others are of
preventive nature [7]. Fault tolerance can be achieved
by cloning [8] or replication. Cloning has several
disadvantages, like it cannot be applied to every
multi-agents system, and agents are supposed to be
stateless. Using replication, shortest recovery time is
achieved and it scales much better.

This metric is particularly crucial in
distributed environments, where failure of one system
can cause failure or delay of many other systems.
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c. Connection Metrics
While studying ‘Structural performance

evaluation of Multi- Agents systems’, Dariusz and
Zelmozer introduced connection metrics to evaluate
the Distributed Object Systems. Since, it is more
difficult to evaluate performance of distributed
applications because of various environments,
architectures and implementations used in distributed
object systems, so, in a real-time project, it is not
possible to first try different architectures and designs
and then decide the one with best performance.
Therefore they introduced connection metrics as the
cheapest analytical tools to decide the best design and
implementation.

In this study, the most suitable metric they
found is Connection Cost Metric. It estimates average
distance between agents. This metric best measures
the performance of distributed multi agent systems.
Best and worst scenarios are discussed for this
metric. These proposed metrics can be applied
efficiently by using service oriented architecture
(SOA).

d. Stability
One chief performance metric is the ‘Stability’

of a Multi Agent System.  It is hard to set a definition
of stability in case of multi-agent system; it must be
somewhat more concrete than the one used by
software engineers, and a bit more flexible than that
defined by control engineers. According to, a system
is considered to be Stable if its state is converged to
an equilibrium distribution. Hence, stability becomes
a quantifiable metric to measure the performance of a
multi-agent system. This metric is specifically
applied to categorize multi-agents used in games,
especially those that are close to real world. For that
purpose, the experiments are performed on ‘Agents
Ecosystem’ in which agents are not fixed over a span
of time. Agents can appear and disappear at anytime.
This metric has also been tested and verified on
simulation models that closely resemble the real-time
systems.

e. Communication
Since MAS [9] is a system based on multiple

agents that are interacting with each other and they
can solve multiple problems that are difficult or even
impossible to be solved by individual agents, so
communication among the agents is a key factor of
performance measure. Communication metrics
include average message length, average number of
messages to and from individual agents and average
message communication delay [12].

There are a number of metrics proposed for
designing the better communication among various
agents. These metrics mainly targets the load

balancing, for example, to check if a single agent is
requested again and again, it will overload that agent,
so based on the metrics, requests will be routed to
some other agent who has less load.

The agents are divided into 5 categories
depending upon their type of communication and
load balancing.

i. Over loaders: these are the agents that send
too many messages and overload the system

ii. Overloaded:  these are the agents that
receive too many messages and get
overloaded.

iii. Isolated: these are the stand alone agents
that neither send messages nor receive them.

iv. Overloaded-Over loader: these are the
agents that are overloaded but they overload
others too.

v. Regular: these are the ideal agents that exist
in a balanced system. They send and receive
a balanced amount of messages.
The metrics are derived to avoid the first
four kinds of agents. Some of the metrics
defined by are as follows:

a) Overloader system metric (BS): it
measures the amount of sent messages by
the agent as compared to total messages
sent by the system.

b) Overloaded system metric (MS): it
measures the amount of messages
received by the agent as compared to total
messages received by the system.

c) OverloaderRole Metric (BR): it measures
the amount of messages sent by an agent
as compared to amount of messages sent
by agents playing the same role.

d) OverloadedRole Metric (MR): it
measures the amount of messages
received by an agent as compared to
number of messages received by the
agents playing the same role.

e. Agent Management
Agent management deals with keeping track

of how many agents are in active state, how many are
yet waiting to be invoked, which agents has
accomplished its task, which is still executing, which
agent require resources and which would be requiring
in the future etc [12].

f. Dependencies between Agents
The mode of communication between agents

may determine the degree of dependency an agent
has on another agent. An agent may be operating in a
synchronous mode with respect to another agent or in
an asynchronous mode.
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In a synchronous fashion an agent may be
dependent on another agents’ data when the other
agent has completed execution. So the agent first
waits for another agent to complete execution first
and then continue with its own execution process.

In an asynchronous manner, an agent may use
various algorithms to keep data synchronized among
all agents. The protocols they might be following
would comprise of WAW (Write after Write) or
RAW (Read after Write) or WAR (Write after Read).
The dependencies among agents can be computed by
drawing dependency graphs.

g. The Optimization of Shared Computer
Resource Usage

In a MAS environment, it might be very
common for agents to have shared memory for
communication of information. It is of prime
importance that any action performed by an agent
does not result in to memory outage. There may be
various factors that will help to ensure that free
memory is maintained and unnecessary data is
removed from the system. There are two types of
data in this regard. One comprises of end results that
are useful for another agent at some time during the
execution of its tasks. The other is used as helping
data to reach an end result. Some tips for managing
memory that are in practice may include:

- Gathering information as to when what data
might be required by an agent.

- Making sure which data is no longer
required after a particular agent has utilized
it.

- Intermediate results are discarded as soon as
they are utilized and no longer required.

- Avoiding dead lock states on shared
resources.

- Synchronizing the availability of resources
efficiently.

- Number of concurrent processes that will
execute in a system must be known in
advance to identify and then handle potential
bottlenecks in the system.

- Dispatcher should be able to accommodate
context switch gracefully without loss of
time.

Since an agent is allowed to operate in limited
memory, the careful analysis of which data is
required at what time in which place and whether it is
no longer required, before implementation of MAS,
will lead to a chance to optimize the task execution of
an agent. Memory leakages if not handled correctly
might result in catastrophic performance on an
agents’ part.

While handing out resources to agents, the
system should be sure that it is the proper time and

the appropriate agent that actually needs the resource.
It is of no use to an agent to confiscate a resource and
then wait for another agent to provide it input for the
utilization of the resource. Such states may either
result in deadlocks or will force an agent to wait that
will impact the performance profusely of the global
goal of the system.

System itself should also minimize the response
time when a resource is requested by an agent on
urgent basis and make sure no other system resource
or agent becomes a hindrance for its execution.

h. Ability of a system to manage the
dynamics of the agent population size

A system should have the capability to
administer several agents all together. The number of
agents might be fixed before the execution of a
process. During execution, some intermediary agents
may appear. System should be well prepared to
supervise these agents and to be hospitable enough to
grant them resources whenever required.

When the agent population size increases, so
does the demand of the system to be more responsive
flourishes to grip the dynamics of all agents. Once a
system is prepared to deal with the increase in
population of agents, it should start providing room
for storage of their result computations as well [9]. A
good practice is to have an estimate to know till what
extent memory requirements would exceed..

The implementation of increase in agent
number can be facilitated by use of multithreading
concept on software. However this approach should
be employed only if one is well aware of its issues
and is equipped of the expertise required to make the
most of it.

i. Bandwidth and Latency
Communication efficiency in MAS is subject

to improvement in overall system performance. In a
fully networked environment it is observed that
bandwidth and latency best define as performance
metrics (Harchol, 2002). The network community
lead proposes a study in which frequency of message
exchanges between agents is shown to be directly
proportional to the throughput of the system. The
more recurrent the communication, the more frequent
we get a response from the system.

A relationship between frequency, bandwidth
and throughput is also discussed. It is deemed,
through experimental evidence, that frequency of
message passing cannot be more than the bandwidth
of the system and hence throughput of the system
gets an upper bound. It is quite notable that the
frequency of message passing also tends to vault the
maximum number of agents communicating at a time
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and the rate of exchange of information between
them.

The latency is described as the time required
for a message to be communicated from a source
agent to a destination agent. This is a critical measure
when agents have to operate in a real time
environment. A small delay in latency may mean to
be a difference between success and failure of entire
MAS. The less the latency, the more effective a MAS
can be. Latency can be highly dependent on the size
of the message transmitted between agents. Longer
messages are prone to high latency rates. Latency has
been a subject of interest for network engineers
because it is believed that it affects the quality of
service of a network [10].

j. Load Balancing
When agents work in a large scale system, the

overall performance is usually measured by
calculating the performance of the locally active
agents. On a huge portal like World Wide Web it is
not easy to maintain global information available at
all times. So people rely on local agents that become
active and supply local information to the users.

Agents gather knowledge from partner agents
locally when global information cannot be supplied
instantly. For this purpose appropriate partner
selection is important for leaning, which is a hectic
task. Recent studies reveal that this factor can be
overcome by load balancing across agents when
workloads are high and concentration on high
performance agents when workloads are less [11].

Load balancing may comprise of shifting data
computation to some partner agents and dedicating
others to gather information locally. Recent research
also uncovers the fact that learning parameters for
local strategies to select partner agents influences the
total performance of MAS. Experiments prove that
statistic values of known resources can make agents
more adaptive. This has a drawback of declining
performance in new environments. Since
environments evolve around, relationship between
speed of change and adaptation starts getting worse
[11].

k. Performance of Cultural Evolution
Learning is a vital aspect of multi agent

system. When agents work in a culture there is a set
of agents that initiate the learning process and
another set that conjure up the content conveyed. The
more autonomous the agent, the more an agents’
performance is increased. One of the most effective
metric to increase the learning process is the addition
of noise in the content communicated between agents
[11].

Noise was added through cultural mutation. A
neural network layer was used for communicating
information. The receiver of the information imitates
what data is communicated by the initiator. This
imitation is based on back propagation of the
received content. The receiver has a hint of what
possibilities an initiator has to communicate. A
receiver also has an idea to how many receivers an
initiator can communicate with. These factors help
while interpreting after back communication.

It is observed that overall fitness is increased
by introducing noise. The ratio of noise to content
communicated is set by keeping in view the number
of initiators and the number of receivers for a specific
content.

3   Case Studies
4.1 Framework for Natural Disaster
Management

Our first case study is that of a framework
introduced for interaction of MAS during natural
disaster (FFNDM) [13]. It consists of Sensor agents
for collecting data, a platform for collaboration
between agents, a decision support system for
deciding what action should the response agents take.

The framework considers some onsite agents
and other remote agents. This gives a distributed
touch to the application. The framework fulfills most
of our performance metrics and hence is the best case
overall taken by us. The only metric it lacks is the
ability to learn from previous records and refine
decision support system accordingly. We have
highlighted the ratings of performance metrics for it
in Table 1.

4.2 Evaluating Urban Traffic
The second case study is based on traffic

modeling, evaluating urban traffic (EUT) and effects
of unexpected events or uncertain factors [14]. Real
time data for busiest intersections is used for this case
study. The traffic is modeled first with the help of
Bayesian Networks, and then causal networks are
used to measure effective factors. Experiments have
proved that this model is cheap and less time
consuming as compared to other models in not only
modeling but also predicting the future
trends/patterns in the traffic.

Attention is given to percentage saturation
value, it is the basic parameter for modeling. One
drawback is that modeling is done assuming long
time constraints only, so the sudden rush or
anomalies in traffic for short time periods cannot be
modeled.
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Table 1: Comparison of case studies

Performance Metrics Elements FMSIND EUT TSM
Number of Agents X
Computational Time for Individual Agent MAS X
Independent Memory Consumed by Multiagents X
Agent Status X
Agent Coordination in MAS X
Fault Tolerance X
Connection Metrics X
Stability X
Communication X
Agent Management X
Dependencies between agents X
Optimization of shared computer resource usage X
Ability of system to manage the dynamics of agent
population size

X

Bandwidth and Latency X
Load Balancing X
Performance of cultural Evolution X

Stability is very well handled in this case
study, since there’s a special factor called ‘traffic
heavy’. The performance is evaluated on the basis of
maximum and minimum traffic, and the case study
has shown good results for all.

Another drawback is that not many factors
could be considered in this case study for evaluation
purposes, since the additional factors added to the
complexity of the overall system, and thus degrading
the performance.
A comprehensive list of where this case study lies in
our performance metrics is given in table 1.

4.3 Trading Simulation Model
This case study specifically focuses on

stability of multi agent systems. As a case study, a
trading simulation model (TSM) is introduced,  there
are M traders with their discounting prices, their
capital and available resources. This scenario requires
tasks that are generated by agents. A task utilizes
some resources, and creates some other ones, to be
used by other agents. Each trader produces some
tasks, and then advertises it among other agents. All
the agents bid to perform that ask, and the bid with
minimum demand is accept usually. Finally, each
trader re-calculates its worth, by taking into account
the discounting percentage, and if its offer was
accepted or not. New agents are generated any old
ones are destructed based upon requirements.

The stability condition is defined as the
system reaches a stationary distribution. Stability

would be if the system is left to execute for a while,
and all the factors including number of traders
(agents), wealth per trader etc reach to their
stationary distribution.

The model can be run with initial constraints
to check out the best and worst cases, especially with
respect to stability.

7. Conclusion and Future Work
Performance metrics of MAS is dependent on

the role an agent has to perform and the environment
it works in. Performance metrics that impact MAS
need to be considered in amalgamation with the
metrics that impact an individual agents’
performance. There are tradeoffs between
performance metrics and MAS global traffic.
Increasing size of MAS may require better
management of agents resulting in low response time.
The user needs to decide which division of a MAS
can compromise on performance and which are
mission critical.

The categorization of performance metrics
have been done on the basis of the role of an agent.
Performance metrics can be evaluated based on
several other criteria and impact of those scenarios
can be studied on real time MAS systems. This could
assist in analyzing performance metrics from diverse
angles.
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