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Abstract: Repair and strengthening of the existing constructions are very essential in many cases and may be the 
sole right decision.  A computer program based on the finite element method has been developed and a new 
compound element was used to simulate the reinforced concrete members strengthened with external layers on 
the different sides. Each compound element consists of four sub-elements. The sub-elements are two 
dimensional isoparametric degenerated elements with eight nodes and five degrees of freedom. Each sub element 
consists of different concrete, steel and strengthening laminates. Seven models from an experimental test 
program of RC beams strengthened with external layers in different sides were analyzed by the finite elements. 
The new developed compound element has been proved to be capable to solve any reinforced concrete member 
strengthened with additional external layers at different sides with accurate representations and acceptable 
results. 
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1. Introduction 
The finite element method is firmly 

established as an engineering tool of wide 
applicability [1, 2 and 3]. Reinforced concrete 
structures are now analyzed by the finite elements 
in wide ranges. Defects of structures may appear 
due to unexpected conditions such as overloading, 
mistakes in the design or construction. Traditional 
and advanced materials are used to repair and for 
strengthening such structures. Simulating the real 
case of these structures by some analytical models 
will help the researchers to analyze many 
constructions with vast variable cases. Reinforced 
concrete structures can be modeled by using 
layered plane stress elements which is suitable in 
case of shear failure problems [4,5], bending stress 
elements which is suitable in case of flexural failure 
problems [6,7] or by three dimensional elements 
[8,9]. In this research, a new constitutive model has 
been developed to analyze different reinforced 
concrete members with their additional 
strengthening layers in any direction and can 
represent both plane stresses and bending stresses 
in order to simulate the actual case. This model was 
compared with the other techniques of the layered 
finite element analysis. The suggested model was 
also verified by comparing the analytical results 
with the experimental results for reinforced 
concrete beams strengthened by steel plates, and 
glass fibers wraps as additional external 
strengthening layers [10-13]. These beams were 
analyzed by the new constitutive modes to simulate 
such layers in different positions.   
 
2. Finite Element Method 

Development of appropriate methods for the 
analysis of reinforced concrete structures 
considering the different nonlinear effects is 

increasingly demanded to ensure the safety of the 
design. The finite element method is considered as 
an important engineering tool to analyze most of 
these problems. The basic concept of this method 
was fully explained and documented in details for 
different procedures and techniques in many 
references [1, 3]. Although finite element 
procedures have been applied to concrete structures 
for over fifty years, the search for suitable elements 
as well as considering the material and geometrical 
nonlinear properties are still in progress and 
enhancement. 

The elements degenerated from the three 
dimensional elements were introduced by Hinton 
[2] to the nonlinear analysis of reinforced concrete 
plates and shells. The results were satisfactory for 
both thin and thick thicknesses. In the present 
analysis, isoparametric degenerated layered 
elements of independent rotational and 
displacement degrees of freedom were employed. 
The main feature of the chosen element and the 
nonlinear procedure will be reviewed briefly. 
 
2.1 Reissner-Mindlin Theory 

Transverse shear deformations have some 
effects on the behavior of plates. These effects 
increase as the thickness of the plate increases. The 
main theories for the analysis of plates are: 
Kirchhoff classical thin plate theory and Reissner-
Mindlin plate theory [5]. In Mindlin theory, 
transverse shear deformations are considered which 
permit the applications for both thin and thick 
plates or shells. Fig. 1 shows both theories. The 
main assumptions are: 

(I) displacements are small compared with 
the plate thickness, 

(II) the stress normal to the mid-surface of 
the plate is negligible, 
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(III) normals to the mid-surface before 
deformation remain straight but not 
necessarily normal to the mid-surface 
after deformation. 

 
The main displacement parameters can be 

expressed as follows: 
wu =(x,y,z)=z (x, y), v=(x,y,z)=z (x,y), w =(x,y,z)=  (x,y)x yθ θ

 (1) 
Where: u, v, w are the displacements in x, y, z 

directions respectively, (x, y) are the coordinates in 
the plan, z: is the thickness direction coordinate, w: 
is the mid-plane displacement, and (θx, θy) are the 
rotations of the normals in the xz and yz planes 
respectively due to bending and can be defined by 
the following equations: 

w w
=  ,       ,x x y yx y

∂ ∂
θ − φ θ = − φ

∂ ∂
 (2) 

Where: φx, φy are the shear rotations. 

2.2. Isoparametric  DegeneratedElement 

A special formulations based on a degenerate three 
dimensional element [2] were applied with the 
following assumptions:  

(I) for thick plates, normals to the middle surface 
remain straight after deformations, 

(II) the strain energy corresponding to stresses 
perpendicular to the middle surfaces is ignored. 
With these assumptions, which agree with the 

assumptions of the Reissner-Mindlin theory, an 
efficient tool for analyzing both thin and thick 
plates or shells becomes available This method 
enabled the shell element to represent the other 
thick structurs such as walls, beams and columns. 
Fig. 2 shows both the three dimensional element 
and the corresponding degenerated shell element. 
Geometric definitions of the element: The relation 
between the Cartesian coordinates of any node and 
the curvilinear coordinates can be written for 8-
node degenerated element as follows: 

xx i8 8
y N ( , ) y N ( , ) V ,i i i 3ii 1 i 1 2z zi mid.

ζ
= ξ η + ξ η∑ ∑

= =

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

  (3)  (3) 

Where: V3i is a vector constructed from the nodal 
coordinates of the top and bottom surfaces at the 
node i as shown in Fig. 3(a), 

x xi i
V y y ,3i i i

z zi itop bottom

= −
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 (4)  (4) 

Ni (ξ,η) are the shape functions and ξ, η, ζ  
are the curvilinear coordinates of the point. The 
geometry and the assumed displacement field were 
identified with the same functions which 
characterize the isoparametric element. The shape 
functions for the eight boundary nodes are shown in 

Fig. 3(b) which are serendipity shape functions and 
can be defined by the following equations: 

(I) For corner nodes  (i = 1, 3, 5, 7) 
1

N (1 )(1 )( 1)i i i i i4
.= + ξξ + ηη ξξ + ηη −  (5)

(II) For mid-side nodes  (i = 2, 4, 6, 8) 
2 2

2 2i iN (1 )(1 ) (1 )(1 ) .i i i2 2

ξ η
= + ξξ − η + + ηη − ξ  (6)

Displacements: The displacement field is described 
by the five degrees of freedom; the three 
displacements of the mid-surface node (u, v, w) and 
two rotations (αi , βi) as follows: 

u ui8 8 hi iv N ( , ) v N ( , ) [V V ] ,i i i 1i 2i2i 1 i 1 iw wi mid.

ζ α
= ξ η + ξ η −∑ ∑

β= =

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎧ ⎫
⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

(7) 

Where: hi is the thickness of the element at the 
node i ; 
V i V , V V V ,1i 3i 2i 1i 3i= × = ×  (8) 

in which  i  is the unit vector in the x-direction. 
Layered discretization: The finite element is 
divided into a number of concrete, steel, and any 
additional repair or strengthening layers.  

The entire element stiffness was obtained by 
summing up the stiffness of the layers [3]. The 
stresses were computed at the mid-surface of the 
layer and assumed to be constant over the thickness 
of each layer as shown in Fig. 4.  

The layer thickness was defined in terms of 
curvilinear coordinate ζ to permit the variation of 
the layer thickness as the element thickness varies 
as shown in fig.5. The stiffness of the element Ke 
was obtained by numerical integration through the 
thickness: 

e Tk B D B J d d d ,= ζ ξ η∫∫∫  (9) 
Tef B J d d d ,= σ ζ ξ η∫∫∫  (10) 

Where: B is the strain matrix composed of 
derivatives of the shape functions, J: determinant of 
the Jacobian matrix. 

2.3. New Compound Finite Element 

A new compound finite element was 
constructed from four isoparametric degenerated 
layered elements to account for both flexure and 
shear stresses for RC members with rectangular 
cross-section. The new finite element consists of 
two finite elements with layers parallel to the top 
surface E1, E3 and another two finite elements with 
layers parallel to the sides of the member E2, E4 as 
shown in Fig. 6. The combination between the four 
sub elements E1, E2, E3, and E4 forms the new 
elements. The developed compound element can 
easily represent both plane stresses in sub elements 
E2, E4 as well as bending stresses in sub elements 
E1 and E3. Also, this facilitates representing 
strengthening layers in the required directions. The 
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dimensions of the finite element were defined in 
terms of curvilinear coordinate's ξ, η and ζ to 
permit the variation of the thickness, the width and 
the length of the layers.  

Each node of the sub element was specified by 
three coordinates X, Y, Z for both the top and the 
bottom surfaces to form the thickness of the 
element at the node. This gives the facility of 
representing the structure in the space. The stiffness 
of the new compound element Ke was obtained by 
numerical integration through the thickness 
equation (9): 

The stress resultants were calculated by the 
integration of the stress components at the mid-
layers: 

(I) Normal forces 
nhh / 2 i iN dz ,x x xh / 2 i 12

+
= σ = σ ∆ζ∑∫ − =

nhh / 2 i iN dz .y y yh / 2 2 i 1

+
= σ = σ ∆ζ∑∫ − =

 (11) 

(II) Shear forces 
nh i ih / 2Q dz ,x xz xzh / 2 2 i 1

+= τ = τ ∆ζ∑∫− =
      

nh i ih / 2Q dz .y yz yzh / 2 2 i 1
+= − τ = − τ ∆ζ∑∫− =

  (12) 

(III) Bending moments 
nh i i ih /2M zdz ,x x xh/2 i 14

+= − σ = − σ ζ ∆ζ∑∫− =
      

  
nh i i ih / 2M zdz ,y y yh / 2 4 i 1

+= − σ = − σ ζ ∆ζ∑∫− =
 (13) 

nh i i ih / 2M zdz ,xy xy xyh / 2 4 i 1
+= − τ = − τ ζ ∆ζ∑∫− =

 (14) 

Where: n is the total number of layers, and h  is the 
thickness of the element. 

2.4. Nonlinear Material Properties  

 The finite element technique permits a more 
realistic analysis for reinforced concrete 
complexities which arise from concrete cracking, 
tension stiffening, nonlinear multiaxial material 
properties and complex interface behavior. In the 
present study, both the perfect and the strain-
hardening plasticity approach were considered to 
model the compressive behavior of the concrete. 
The flow theory of plasticity [5] was employed to 
establish the nonlinear stress-strain relations in the 
plastic range. 

Yielding criterion for concrete: The yielding 
criterion for concrete under a triaxial state is 
generally depending on the three stress invariants. 
For most cases, the mean normal stress I1 and the 
shear stress invariant J2 are adequate to define the 
yield criterion [5]. 

1
2f (I , J ) [ (3J ) I ] ,o1 2 2 1= β + α = σ  (15) 

Where: σo is the equivalent effective stress taken 
as the compressive stress from uniaxial tests, and α, 
β are two material parameters. The Von-Mises 
yield criterion [5] assumes that α = 0.0 and β = 1.0. 
The relation between the equal biaxial yield stress 
f

cb
 and the uniaxial yield stress fc

´ may be assumed 
as:     

'f 1.16 fccb =    (16) 
Applying Kupfer’s results [11] yields that 

α= 0.355 σo and β= 1.355. So, equation (15) can be 
written in terms of the stress components as: 

2 2 2 2 2f ( ) {1.355[( ) 3( )]x y x y xy xz yzσ = σ +σ −σ σ + τ + τ + τ

1
20.335 ( )}x yo o+ σ σ + σ = σ  (17) 

In the perfect plastic model, σo was taken as 
the ultimate stress fc´ obtained from uniaxial 
compression tests. When the effective stress 
reaches the ultimate stress f

c
´ a perfectly plastic 

response is assumed until the crushing surface is 
reached. 

Concrete crushing: The crushing of the 
concrete is considered as a strain controlled 
phenomenon. The appropriate strain criterion may 
be developed by converting the yield criterion 
defined in terms of stresses (Eq. 15) directly into 
strains: 

1
' ' 2f '(I , J ) [ (3J ') I '] ,u1 2 = β + α = ε  (18) 

Where:  I
1
´ and J

2
´ are strain invariants and εu 

is the ultimate strain. 
Applying the material parameters determined 

from Kupfer’s results, the crushing condition is 
expressed in terms of the total strain components as 
follows: 

2 2 2 2 2f '( ) {1.355[( ) 0.75( )]x y x y xy xz yzε = ε + ε − ε ε + γ + γ + γ + 
1
20.335 ( )} .u x y u+ ε ε + ε = ε  (19) 

The concrete is assumed to loose all of its 
characteristics of strength and rigidity when εu 
reaches the value of the ultimate strain. 

Concrete cracking:  Cracks are formed in any 
of the concrete layers when the tensile stress at a 
principal direction reaches the value of ft´, and 
developed in the direction normal to that principal 
stress. Assuming 1 and 2 are the two principal 
directions in the plane of the structure and 3 is 
perpendicular to this plane, the stress-strain 
relationship for concrete which is cracked in the 
first principal direction, is: 



 
 
 

Journal of American Science, 2011;7(10)                                           http://www.americanscience.org 

- 634 - 
 

0 0 0 0 0
1 1

0 E 0 0 0
2 2c0 0 G 0 0 ,1212 12

c0 0 0 G 013 1313
c0 0 0 0 G23 2323

σ ε

σ ε

τ γ=

τ γ

τ γ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (20) 

Where: c
ijG  is the cracked shear modulus as a 

function of the current tensile strain represented as 
follows: 

c c1G 0.25G(1 ); G 0.0, if( 0.004) ,12 12 10.004
5G Ec c cG G , G , and G .13 12 23 6 2(1 )

ε
= − = ε ≥

= = =
+ ν

 (21) 

When cracks develop in both the principal 
directions, the stress-strain relationship becomes: 

0 0 0 0 01 1
0 0 0 0 02 2
0 0 0 0 ,1212 12
0 0 0 01313 13
0 0 0 0 2323 23

cG
cG

cG

σ ε

σ ε

τ γ

τ γ

τ γ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (22) 

where c
ijG  is defined as: 

c c1G 0.25G(1 ); G 0.0, if( 0.004),13 13 10.004

c c2G 0.25G(1 ); G 0.0, if( 0.004),23 23 20.004
c c c c c cG 0.5G ; or G 0.5G , if (G G ).12 13 12 23 23 13

ε
= − = ε ≥

ε
= − = ε ≥

= = <

 (23) 

Modeling of steel: The reinforcing bars were 
replaced by an equivalent "smeared" distributed 
steel layer. The equivalent thickness of the steel 
layer is given by: 

Ast  = d,s b
= µ×  (24) 

Where: As is the cross-sectional area of one 
reinforcing bar, b is the spacing of the bars, µ is the 
reinforcement ratio and d is the effective depth.  

The thicknesses of the steel layers and the 
effective depths were specified in the analysis by 
the curvilinear coordinate ζ. Each steel layer has 
uniaxial behavior, resisting only axial forces in the 
bar direction.  

Tension stiffening: Fig. 7 shows the stress 
distribution of a cracked reinforced concrete 
element. As the load increases, more cracks 
develop and the amount of the tension carried by 
the concrete is gradually decreased. A gradual 
release of the concrete stress component normal to 
the cracked plane was considered in the present 
work as shown in Fig. 8. The modulus of elasticity 
is decreased due to cracking as strain increase by 
following the formula: 

'ft iE (1 ) ; mti i
mi

εα
= − ε ≤ ε ≤ ε

ε ε
 (25) 

Where: ft´ is the modulus of rupture of the 
concrete and α, εm : aretension stiffening 
parameters. 

The normal stresses are obtained by: 
' '1 2f (1 ) ; , f (1 ) ;t t m t t m1 1 2 2

m m
.

ε ε
σ = α − ε ≤ ε ≤ ε σ = α − ε ≤ ε ≤ ε

ε ε

 (26) 
3. Computer Program  

The finite element program developed in this 
work is an extended version of the program given 
in Ref. [7]. Isoparametric degenerated layered 
elements of eight nodes per element and five 
degrees of freedom per each node were chosen. 
Material nonlinearities for both the concrete and the 
steel were taken into account as well as geometrical 
nonlinearity. The modified Newton-Raphson 
method was applied in the analysis [1]. The 
tangential stiffness matrix was recalculated for the 
second iteration of each load increment. The main 
features of the program are summarized as follows: 
1. The large input data file required for the new 

compound elements mesh is reduced by 
developing a general mesh generator which 
creates all the required data for the compound 
elements. 

2. Each node of the element is specified by three 
coordinates X, Y, Z for both the top and the 
bottom. This gives the facility of representing 
the structure in the space. Top and bottom 
coordinates of each node enable to define the 
top and bottom surface of the element and to 
represent any variation of the thickness through 
the element.  

3. The material properties of the concrete, steel, 
or strengthening layers can be modified for any 
element to provide the best simulation of the 
strengthened RC structure.  

4. The dimensions of the finite element are 
defined in terms of curvilinear coordinates  ζ , 
η, and ξ to permit the variation of the 
thickness, the width and the length of the 
layers. 

5. The created compound element can easily 
represent both plane stresses and bending 
stresses in sub elements as well as 
reinforcement and strengthening layers in the 
required directions. 

6.  To identify the stresses and strains inside the 
element, 3x3 Gauss points have to be 
considered to define the stresses and strains at 
each layer of the element.  
Fig. 9, present the procedure of the analysis in 

the program. 

4. Application Example 
An experimental program was carried out to 

investigate the behavior of two-span continuous 
self-compacting reinforced concrete beams repaired 
and strengthened using both the traditional and the 
advanced materials by different techniques [7]. The 
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experimental program consists of twenty-two of 
reinforced concrete beam models which have a 
constant cross section and reinforcement as shown 
in Fig. 10.   

Cases of study: The following cases were 
chosen from the experimental program [7].  

Case (a): One RC beam without strengthening, 
control beam Bo. 

Case (b): Two RC beams strengthened with steel 
plates or GFRP on top and bottom surfaces 
(BSSTB and BSGTB). 

Case (c): Two RC beams strengthened with steel 
plates or GFRP on both vertical sides at +ve 
moments, (BSS+ve||  and  BSG+ve||). 

Case (d): Two RC beams repaired with steel plates 
or GFRP at U shape at the bottom surface and 
on both vertical sides after preloading level 
=50% of the failure load of Bo, (BRSU and 
BRGU). 
Fig. 10 shows the investigated cases (b, c, and 

d) for the different strengthening techniques. 
The material properties of the test program 

were introduced in the table 1. 
Different cases of study were analyzed by the 

FEM to show the efficiency of using the new 
compound model for the analysis of reinforced 
concrete beams strengthened in different directions 
as shown in fig.11. The results were compared with 
the experimental results for both the plane stress 
and bending stress finite element techniques. 

Modeling of tested beams by FEM: For the 
symmetry, only one half of the beam is analyzed 
considering fixation at the intermediate support. 
Fig. 12 shows the capability of bending, plane 
stress and compound layered elements for 
representing the real RC section strengthened with 
additional external layers from all sides. It was 
noticed that bending stress layered element cannot 
represent the vertical legs of stirrups and side 
strengthening layers. The plane stress layered 
element cannot represent the horizontal legs of 
stirrups and the top and bottom strengthening 
layers. However, the new compound element can 
represent all reinforcements as well as the all 
strengthening layers. 

The tested beams were modeled by three 
different techniques, as shown in Fig. 13.  The first 
one performed by using nine bending stress 
elements with 48 nodes and the second by using 45 
plane stress elements with 164 nodes while the 
third was by using nine new compound elements 
consists of 36 sub elements with 116 nodes. The 
generated mesh used for the analysis and the 
boundary conditions for the different techniques are 
shown in Fig. 13. Loads are applied in one ton 
increments to simulate the same procedure as for 
the experiments. Deflections, stresses, strains, 
cracking of the concrete, yielding of reinforcements 
or strengthening steel plates, or failure of the GFRP 
layers were all recorded by the analysis. The load 

deflection curves can express the overall behavior 
of the beam correctly.  In this research, only the 
load deflection curves will be compared for 
different cases by the different methods.  

Analysis of the results: Case (a):  Load 
deflection curves of the experimental and analytical 
results for the RC control beam Bo are compared in 
Fig. 14. The finite element results showed a good 
correlation with the experimental results.  The new 
model shows the best representation of the control 
RC beam. The results of the bending stress 
techniques can be improved with increasing the 
number of elements. 

In Case (b):  As the RC beams are 
strengthened on the top and bottom surfaces, beams 
can be analyzed by bending stress elements and the 
compound elements. Figs. 15 and 16 show the load 
deflection curves for both the numerical methods 
and the experimental results for beams which have 
been strengthened with steel plates and GFRP 
respectively. The results of the new compound 
elements can be considered as the best results with 
respect to the experimental results. 

In Case (C), if the RC beams strengthened 
with steel plates or GFRP on both vertical sides at 
+ve moments, beams can be analyzed by plane 
stress elements and the compound elements. Figs. 
17 and 18 compare the load deflection curves for 
both the numerical methods and the experimental 
results for beam strengthened with steel plates and 
GFRP respectively. The results of the new 
compound elements agree with the experimental 
results. 

Case (d) represents RC beams that have been 
repaired by steel plates or GFRP as U shape at the 
bottom surface and on both vertical sides after 
preloading level =50% of the failure load of Bo. 
Beams can only be analyzed by the new compound 
elements. Figs. 19 and 20 compare the load 
deflection curves of the numerical method with the 
experimental results for beam strengthened with 
steel plates and GFRP respectively. The results of 
the new compound elements showed a good 
correlation and harmony with the experimental 
results. 

From this analysis, it is found that the new 
compound model had been proven to be capable of 
representing the RC beams with any strengthening 
layers in any directions and can estimate the 
behavior with a good accuracy.  
 
5. Conclusions 
From this research the following conclusions may 
be drawn: 
1. The quadrilateral isoparametric degenerated 

shell element applied in this research work can 
perform the analysis of 3D-structures 
efficiently, where each node of the element has 
top and bottom coordinates and is specified in 
X, Y, Z directions. 
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2. The degenerated element which is based on a 
degenerated three dimensional continuum 
element permits to represent any variation of 
the thickness in the element. Subsequently, any 
variation in the thickness of the structure can be 
simulated  

3. The discrete layered approach enables to cover 
variable material properties of reinforced 
concrete structures not only along the surface 
of the structure but also through the thickness. 

4. Considering the shear deformations by applying 
Reissner-Mindlin theory in the analysis enables 
to analyse both thin and thick elements. 

5. The developed new compound element can 
easily represent both plane stresses and bending 
stresses in sub elements that facilitate to 
represent the reinforcement as well as the 
strengthening layers in the required sides. 

6. The new compound element showed good 
correlation and harmony with the test results 
which can help for predicting the behavior of 
repair and strengthened structures. More 
different cases with new different parameters 
can be studied and investigated easily. 

7. The developed integrated computer program 
based on the new compound finite elements 
had been proved to be capable for the 
numerical analysis of the nonlinear behavior of 
strengthened RC members. The results of the 
tested beams had verified the reliability of this 
developed model to simulate the nonlinear 
behavior of reinforced concrete beams 
strengthened with external layers in any 
directions.  

 
 

List of Symbols 
is the compressive strength of the self compact concrete fc' 
is the modulus of rupture of concrete ft' 
is the young’s modulus of concrete Ec 
is the young’s modulus of steel Es 
is the yield stress of the normal mild steel fy 
is the yield stress of the high tensile steel fy 
is the yield stress of the steel plate used for strengthening fy 
is the tensile modulus of the used GFRP wraps E 
is the tensile strength of the used GFRP wraps σ  
are the displacements in x, y, z directions respectively u, v, w 
are the coordinates in the plan x, y 
is the thickness direction coordinate z 
is the mid-plane displacement w 
are the rotations of the normals in the xz and yz planes respectively θx, θy 
is the shear rotations φx , φy 
is a vector constructed from the nodal coordinates V3i 
are the shape functions  Ni  
are the curvilinear coordinates of the point ξ, η, ζ 
is the thickness of the element  hi 
The unit vector in the x-direction i 
is the stiffness of the element  Ke 
is strain matrix  B 
is the determinant of the Jacobian matrix J 
is the total number of layers n 
is the thickness of the element. h 
is the equivalent effective stress σo 
are two material parameters α, β 
are strain invariants I

1
´ , J

2
´ 

is the ultimate strain. εu 
is the cracked shear modulus c

ijG  
is the modulus of rupture of the concrete ft´ 
is the cross-sectional area As 
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 Table 1: material properties of the test program [7] 

property Symbol Value 
( MPa) 

Compressive strength of the self compact concrete fc' 50 
Modulus of rupture of concrete ft' 3.2 
Young’s modulus of concrete Ec 23000 
Young’s modulus of steel Es 210000 
Yield stress of the normal mild steel fy 240 
Yield stress of the high tensile steel fy 360 
Yield stress of the steel plate used for strengthening fy 235 
Tensile modulus of the used GFRP wraps (Hex-100 G) E 70000 
Tensile strength of the used GFRP wraps (Hex-100 G) σ  2294.4 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 1. Deformation of the cross-section of the shell element 
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Fig.  2.   Degeneration of 16 nodes 3D-element to 8 nodes shell element [ 2 ]   
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Fig. 3. Coordinate systems for isoparameteric degenerated element 
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Fig. 5. Layered element; curvlinear coardinate and stress diagram 
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Fig. 9   Flowchart of the computer program 
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Figure 10. Typical dimensions and details of reinforcement of the control beam Bo 
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Fig. 12. Reinforcement and strengthening layers that can be represented  
by different techniques of the finite elements  

 

RC beam strengthened  
with external layers 

Top reinforcement 

bottom reinforcement 

Vl. stirrups legs 

Hl. stirrups legs 

Top strengthening layer 

Side  strengthening 
 layer 

Bending stress  
layered element 

 

plane stress  
layered element 

New compound 
layered element  

3x20 cm 3x20 cm 2x17.5 cm
10 

x 

y 

z 

x 10 

25 cm 

y

z 

(a) Boundary conditions and mesh of bending stress elements 
 (9 bending stress elements,48 nodes) 

z P 

(b) Boundary conditions and mesh of plane stress elements 
(45 plane stress elements, 164 nodes) 

10 cm

y

z 

25 

x 

3x20 cm 3x20 cm 2x17.5 cm

10 

10 

y 

x 

Fig. 13. Boundary conditions and different FEM meshes  

C.L. 

3x20cm 3x17.5 3x20cm 
10cm 

Y 

Z 

X 

P/2
P/2

Fixed 

Rٌoller

(c) Boundary conditions and mesh of the new compound elements 
 (9 new compound elements, 36 sub-elements, 116 nodes)



 
 
 

Journal of American Science, 2011;7(10)                                           http://www.americanscience.org 

- 643 - 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

50

100

150

200

250

300

0 50 100 150 200 250 300
Deflection, mm

L
oa

d,
 K

N
 Experimental, Control Bo

FEM, Bending Stresses
FEM plane stresses
FEM Compound Elements

Fig. 14.  Comparison between  load deflection  
curves for control beam Bo, Case( a) Fig. 15  Load deflection curves
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Fig. 16  Load deflection curves
for beam BSGTB, Case (b) 
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Fig. 18  Load deflection curves 
for beam BSG+ve||, Case (c) 
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Fig. 17  Load deflection curves 
for beam BSS+ve||, Case (c) 
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Fig. 19  Load deflection curves  
for beam BRSU, Case (d) 
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Fig. 20  Load deflection curves
for beam BRGU, Case (d) 
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