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Abstract: Contrary to the growing use of portfolios and in spite of the rich literature on the subject, yet there are 
some problems and unanswered questions. The aim of this work is to be a useful instrument for helping finance 
practitioners and researchers with the portfolio selection problem. This study reviews Modern Portfolio Theory 
(MPT) literature and describes the problems and solutions, which have been put forward in the literature. In this 
paper, selection of a portfolio is optimized via two different methods from two major optimization approaches, 
Heuristic and Classic. Heuristic methods are supposed not to “get stuck” in local optima, in which classics often do 
get stuck. Heuristic algorithms perform a wide random search; consequently, the chance of being trapped in local 
optima is deeply decreased. Therefore, in this study, Genetic Algorithm, a heuristic evolutionary method, and a 
classic solver are applied to construct and optimize portfolios in a sample market of five stocks. The research 
findings indicate that Genetic Algorithm, in contrast to classic methods, is more adaptable to the portfolio selection 
problem and has a better performance in contrast to its classic optimization counterparts.  
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1. Introduction 

The rationale for stock market 
diversification is that the overall risk from owning 
many stocks is lower than the risk of holding a few 
stocks (Hagin, 1979). In a metaphor “Money is like 
manure – when it stacks up, it stinks; when you 
spread it around, it makes things grow.” Texan Clint 
Murchison, Sr., one of the wealthiest investors ever. 
Effects of diversification on risk reduction have been 
studied extensively (Brealey, 1969, Evans, 1968, 

Gaumnitz, 1967), but the importance of portfolio 
management lies not in the number of holdings, but 
rather in both the nature and degree of the combined 
risk of the underlying stocks (Hagin, 1979). Brealey 
(Brealey, 1969) has shown quite dramatically what can 
happen when one considers both the nature and 
degree of risk in portfolio composition. He reported 
that a portfolio containing only 11 securities, which 
were carefully selected for their risk-diversifying 
characteristics, would be less risky than a portfolio of 
2000 securities, which were selected without regard 
to risk! 

Thus, the question is “How should 
investment risk be considered?”. Furthermore, “Once 
the investment risk is considered, how should 
portfolios be optimized?” This paper intends to 

summarize the answers to these questions efficiently, 
and also to make new viewpoints on the topic. 

Modern portfolio theory (MPT) takes its 
origin from the pioneering work of Markowitz. Since 
Markowitz’s 1952 revolutionary article on portfolio 
selection (Markowitz, 1952), there has been many 
contributions to this important field of financial 
studies, and within last 60 years considerable 
progress has been made. Markowitz’s work has 
permanently changed the course of investment-
related thought. Before Markowitz’s article, it was 
more or less taken for granted that the proper way to 
construct an investment portfolio was just to select 
the best securities. It was erroneously assumed that 
this technique would maximize the expected return of 
the resultant portfolio (Hagin, 2004). 

Markowitz model has received remarkable 
attention of math and computer science experts, 
because finding the optimum solution to the model 
equations has always been a challenging issue. 
Experts have tried different optimization methods to 
go through this problem, many of whom have tried 
classic methods and many have tried heuristic 
methods. This research is also carried out to evaluate 
the performance of both approaches and make a 
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comparison between them in order to identify the 
more promising approach. 

The rest of the paper is organized as follows: 
In section 2, a review of the literature of Markowitz 
portfolio theory and its shortcomings is given. 
Section 3 is devoted to an investigation of portfolio 
optimization approaches, methods and programs in 
brief. In section 4, methodology and data are 
presented. A portfolio selection problem is optimized 
via two different methods and discussed in the next 
section, section 5. Finally, section 6 summarizes the 
paper and talks about the conclusions.  
 
2. Literature Review 
2.1. Markowitz Model 

The insight for which Harry Markowitz 
received the Nobel Prize was first published in 1952 
in an article entitled “Portfolio Selection” 
(Markowitz, 1952) and more extensively in his 1959 
book, Portfolio Selection: Efficient Diversification of 
Investments (Markowitz, 1959). When published in 
1952, Markowitz’s ideas scarcely took the investment 
profession by storm. As with insights from other 
researchers, his equation-filled presentation is over 
the heads of most investors. Without the benefit of 
Markowitz’s insights, dangerous homilies such as 
“put all of your eggs in one basket, and watch the 
basket” still prevail (Hagin, 2004). 

Markowitz pointed out that the goal of 
portfolio management is not solely to maximize the 
expected rate of return, but instead to maximize 
“expected utility” – setting complexities aside, 
“utility” can be viewed as being synonymous with 
“satisfaction”. 

Markowitz began with the valid premise that 
all investors want a combination of high returns and 
low risk. In other words, rational investors maximize 
their utility by seeking either; 

a. The highest available rate of return for a 
given level of risk. Or 

b. The lowest level of available risk for a 
given rate of return (Hagin, 1979). 

One of Markowitz’s most important 
innovations was using the variance (or its square root, 
the standard deviation) of a distribution of likely 
returns (possible expected returns) as a measure of 
Risk. With his insight, Markowitz reduced the 
complicated and multidimensional problem of 
portfolio construction with respect to a large number 
of different assets, all with varying properties, to a 
conceptually simple two-dimensional problem known 
as “mean-variance” analysis (Hagin, 2004). 

According to Markowitz formulation, the 
selection of an efficient portfolio begins with an 
analysis of three estimates:  

 

a. The expected return for each security. 
b. The variance of the expected return for 

each security. 
c. The possibly offsetting, or possibly 

complementary, interactions, or covariance, of return 
with every other security consideration (Hagin, 1979). 

The calculation of the expected return for an 
aggregate of portfolio of securities is relatively easy; 
it is merely the weighted average of the expected 
return of the individual securities. Nothing else is 
relevant: 

E (Rportfolio) =           (1) 
 
Where: 
E (Rportfolio) = Portfolio’s expected rate of 

return. 
E (Ri) = Security i’s expected rate of return. 
Wi = the proportion of the portfolio’s value 

invested in security i (Markowitz, 1952). 
The calculation of the combined variance is 

more complicated. The point to be considered is that 
the risk of a portfolio is not typically equal to the 
weighted average of the risks of its component 
securities. The risk of a portfolio depends not only on 
the risks of its securities, considered in isolation, but 
also on the extent to which they are affected similarly 
by underlying events (Sharpe, 1978). Therefore, the 
relationship between the risk of a portfolio, 
consisting of n securities, and the relevant variables 
could be shown as follows: 

 

VAR(Rportfolio) = Wi.Wj.COV (Ri,Rj) (2) 
 
Using relevant mathematical equations, eq. 

2 could be transformed to eq. 3 shown below: 

VAR(Rportfolio) = Wi.Wj.SRi.SRj.rij (3) 
 
Where in both above equations:  
VAR (Rportfolio) = Variance of portfolio’s 

rate of return. 
VAR (Ri) =Variance of security i’s rate of 

return. 
COV (Ri,Rj)= Covariance between 

securities i,j’s rate of return. 
n = the number of securities. 
Wi or Wj =the proportion of the portfolio’s 

value invested in security i or j.  
rij = Coefficient of correlation between 

securities i and j. 
Si = Standard deviation for security i. 
And Sj = Standard deviation for security j 

(Markowitz, 1952). 
 



Journal of American Science, 2011;7(11)                                                    http://www.americanscience.org 

  

http://www.americanscience.org            editor@americanscience.org 341

Investigating risk equation leads to some 
interesting results: 

1. In portfolios with perfectly positively 
correlated returns, diversification does not 
help. In such cases, diversification does not 
provide risk reduction, only risk averaging. 

2. In portfolios with perfectly negatively 
correlated returns, diversification can 
eliminate the risk. This principle motivates all 
hedging strategies. 

3. A special case of extreme importance arises 
when a cross-plot of security returns shows no 
pattern that can be presented even 
approximately by an upward-sloping or 
downward-sloping line, known as uncorrelated 
returns. In this case, the risk of the portfolio is 
less than the risk of its component securities. 
Diversification has indeed helped and has 
surely provided substantial risk reduction. This 
case provides the basis for insurance, or risk 
pooling. This is why insurance companies 
attempt to write many individual uncorrelated 
policies and spread their coverage so as to 
minimize overall risk (Sharpe, 1978). Imagine a 
portfolio of equal parts of N securities, each 
with an equal risk of S%. Then, by using eq.2 
(or eq.3), and simplifying, following results 
would be achieved: 

  

(4) 
And   

                (5) 
 

 2.1.1. Basic assumptions of Markowitz model  
a. The investor does (or should) maximize 

the discounted (or capitalized) value of future returns 
(Markowitz, 1952, Williams, 1938). 

b. Investors behave rational in investment 
decisions, which means they choose to hold efficient 
portfolios- portfolios, which maximize each 
investor’s utility (Markowitz, 1952). 

 
2.2. Shortcomings of Markowitz Model and 
Solutions 

This section reviews the most important 
criticisms of Markowitz model and solutions or 
suggestions made over different periods by 
experienced practitioners and researchers. 

 
2.2.1. The alternatives of lending and borrowing, 
which are very general alternatives in stock markets, 
are omitted and ignored in Markowitz original 
model.  

William Sharpe (Sharpe, 1964) broadened 
Markowitz’ analysis to include riskless asset (such as 
short-term government securities) and the possibility 
of borrowing; the approach is known as Asset 
allocation line and in a more general sense, capital 
asset pricing model (CAPM). Besides, Arbitrage 
theory of capital asset pricing, which is similar to 
CAPM and a substitute for that, was developed by 
Ross et al. in 1980’s (Roll, 1984, Ross, 1976). Similar 
to CAPM, APT is based on the rationale that 
unsystematic risk is diversifiable and therefore, 
should have a zero price in the market with no 
arbitrage opportunities. It is out of the scope of this 
paper to discuss them here, we only mention that in 
his broadened model, Sharpe demonstrated: “When a 
risky security or portfolio is combined with a riskless 
one, the risk of the combination is proportional to the 
amount invested in the risky component (Sharpe, 
1967).”  

 
2.2.2. Markowitz efficient portfolios are based on the 
analysis of estimates of future risk and expected 
returns, hence these estimates and therefore, the 
efficient set can be expected to change over time. As 
a result, the amounts of both human and 
computational resources to resolve the model, 
increases enormously. 

To use quantitative expressions, for a market 

of N stocks, Markowitz model needs   
different estimates. Aside from the sheer volume of 
the data, practical problems face experts who are to 
estimate the co-movements between different stocks 
from different industries. Furthermore, even if the 
experts prepared such estimates, it would be difficult 
to place any confidence in their accuracy (Hagin, 
1979). To bridge the gap between his theoretical 
solution and the practical problems, Markowitz 
suggested using the relationship between each 
security’s rate of return and the rate of return on a 
market index as a substitute for explicit data on the 
covariance of each pair of securities under study. 
Brealey justifies this approach artistically: “when the 
wind of recession blows, there are few companies 
that do not lean with it”. Sharpe (Sharpe, 1964) 
pursued the approach with single-index model. This 
model is driven with three estimates: 

a. The amount of specific, or non-market, 
return (Alpha). 

b. A measure of responsiveness to market 
movements (beta). 

c. The variance of non-market return. 
To solve some disquieting assumptions 

reflected by Sharpe’s model, limited multi-index 
approach, which still minimized data collection 
requirements and had advantages like “fine-tuning 
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and explicitly estimating the comovements”, was 
introduced and evaluated by several tests for 
performance investigation in contrast to other 
portfolio construction alternatives (King, 1966, Cohen, 
1967, Elton, 1973).  

 
2.2.3. Markowitz normative model has found 
relatively little application in practice when some 
additional features, such as fixed costs and minimum 
transaction lots, are relevant in the portfolio 
selection problem. 

Hans Kellerer et al. (Kellerer, 2000) 
introduced some different mixed-integer linear 
programming models dealing with fixed costs and 
possibly minimum lots to solve this shortcoming. 
Three main conclusions can be drawn of their 
research: 

a. The fixed costs increase a portfolio’s risk 
by reducing the number of securities held. 

b. The introduction of fixed costs produces a 
reduction in portfolio diversification much greater 
than the increase of their level. 

c. The application of minimum lots 
strengthens the effects described at the previous 
point. 

 
2.2.4. The combination of a large number of stocks 
and a large number of transactions (trading tickets) 
increases the costs of trading because both custodial 
fees and transaction costs increase.  

It is usually the case in Markowitz models. 
To overcome this problem, Dimitris Bertsimas et al. 
(Bertsimas, 1999) developed a method to construct 
portfolios through nonlinear mixed-integer 
programming. Their portfolio is close to a target 
portfolio that is constructed using quadratic 
programming. The constructed portfolio has the same 
liquidity, turnover and expected return as the target 
portfolio; it controls frictional costs and does so with 
fewer stocks and fewer tickets. 

 
2.2.5. In efficient and semi-efficient markets, the 
future returns of each security cannot be correctly 
reflected by the securities’ data in the past. 
Therefore, the statistical techniques and the experts’ 
judgment and experience are combined together to 
estimate the security returns in the future. 

To be more realistic in estimations, Jun Li 
and Jiuping Xu (Li, 2009) assumed the returns of 
securities to be fuzzy random variables; they 
concluded that the proposed model can provide more 
flexible results. They also showed that the proposed 
portfolio selection model can generate an efficient 
frontier according to the investor’s degree of 
optimism. 

 

2.2.6. MPT relies on the assumptions that markets 
are efficient and investors are rational. However, 
many market anomalies have been identified that 
question these assumptions. 

Behavioral finance provides several 
explanations for these anomalies and has provided 
theories that explain the inefficiency of markets and 
the apparent irrationality of investors. Bart Frijns et 
al. (Frijns, 2008) showed that mean-variance variables 
in Markowitz model can be extended by behavioral 
concepts and socio-demographic variables. They 
showed that the level of the risk-free rate, an 
individual’s risk aversion, market sentiment, self-
assessed financial expertise, age and gender are 
other determining factors of portfolio choice. 

 
3. Portfolio optimization approaches, methods and 
programs 

Markowitz demonstrated that once prepared, 
the foregoing security descriptions could be 
manipulated by portfolio optimization programs to 
produce an explicit definition of the efficient 
portfolio in terms of: 

a. The securities to be held. 
b. The proportion of available funds to be 

allocated to each (Hagin, 1979). 
Since then, many methods have been 

applied to solve Markowitz equations. One of the 
earliest methods used to solve the equations is known 
as “quadratic programming” Other classic solvers 
have also been applied to the model; authors can refer 
to programs like LINDO, LINGO and Microsoft 
Office Excel as some sample programs that use 
classic solvers as optimizers. The problem with 
classic methods is that they can usually just find the 
local optima, in other words, in a complicated 
problem with nonlinear equations, like that of 
Markowitz, classic solvers stop solving as soon as 
reaching a local optimum! 

To overcome this problem, heuristic (also 
referred to as Metaheuristic) methods have been 
applied to the portfolio selection problem. Although 
still there is no guarantee, heuristic methods have 
usually turned out to achieve better results and reach 
higher performances in contrast to their classic 
counterparts; especially it is so in complicated 
problems (e.g. engineering problems in electrical, 
communications and flood mechanics fields). This 
better performance goes back to their nature of 
design; they have been created to “jump out” of local 
optima to reach the global optimum. They are 
supposed not to “get stuck” in local optima. In other 
words, because heuristic algorithms perform a wide 
random search, the chance of being trapped in local 
optima is deeply decreased. Fig. 1 illustrates the 
concept of local and global optimum. 
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Figure 1. The concept of local and global optimum 
Source: Example of Rastrigin's Function, 
MATLAB2007a[21]. 

 
4.  Methodology and Data 
4.1. Methodology 

The authors have examined different 
metaheuristic methods to solve the portfolio selection 
problem, from which the followings have outstanding 
performances and could be mentioned here: Genetic 
Algorithm, Particle Swarm Optimization (PSO) 
(Talebi Arash, 2010), Simulated Annealing, and 
Imperialist Competitive Algorithm (ICA). 

In this section, portfolio selection problem is 
optimized using the Genetic Algorithm (GA), which 
will be described in following paragraphs briefly, 
and a classic solver. For GA, MATLAB software 
(The MathWorks, 1984-2009 ) is used and Microsoft 
Office Excel (Microsoftcorporation, 2007) is also 
invoked as a classic optimizer. 

 
4.1.1 Genetic algorithm 

The basic principles of genetic algorithms 
(GAs) were first proposed by Holland (Holland, 1975). 
GAs are general-purpose search algorithms, which 
use principles inspired by natural genetics to evolve 
solutions to problems (G´omez, 1999). A basic 
element of the Biological Genetics is the 
chromosomes. Chromosomes cross over each other. 
Mutate itself and new set of chromosomes is 
generated. Based on the requirement, some of the 
chromosomes survive. This is the cycle of one 
generation in Biological Genetics. The above process 
is repeated for many generations and finally best set 
of chromosomes based on the requirement will be 
available. The Mathematical algorithm equivalent to 
the above behavior used as an optimization technique 
is called “Artificial Genetic Algorithm” (Gopi, 2007). 

The basic idea is to maintain a population of 
chromosomes (representing candidate solutions to the 
concrete problem being solved) that evolves over 
time through a process of competition and controlled 
variation. A GA starts with a population of randomly 

generated chromosomes, and advances toward better 
chromosomes by applying genetic operators modeled 
on the genetic processes occurring in nature. The 
population undergoes evolution in a form of natural 
selection. During successive iterations, called 
generations, chromosomes in the population are rated 
for their adaptation as solutions, and based on these 
evaluations, a new population of chromosomes is 
formed using a selection mechanism and specific 
genetic operators such as crossover  and mutation 
(Pourzeynali, 2006). 

An evaluation or fitness function must be 
devised for each problem to be solved. Given a 
particular chromosome, a possible solution, the 
fitness function returns a single numerical fitness, 
which is supposed to be proportional to the utility or 
adaptation of the solution represented by that 
chromosome. 

Although there are many possible variants of 
the basic GA, the fundamental underlying mechanism 
consists of three operations: evaluation of individual 
fitness, formation of a gene pool (intermediate 
population) through a selection mechanism, and 
recombination through crossover and mutation 
operators. The operators invoked by Gas are 
described in here: 

(1) Chromosome representation 
Each design is represented by an n0-bit-long 

chromosome, where n0 is the sum of the length 
required to represent each design variable. 

(2) Initial population 
The GA starts from a population of 

chromosomes as a set of initial designs. The initial 
population is chosen randomly. 

(3) Fitness function 
The GA uses a function value for the 

selection of an operator; this function reflects the 
objective and a penalty for constraint violation.  

(4) Crossover 
The crossover operator is used to produce 

two offsprings from the selected parents. 
(5) Mutation 
 
In order to maintain variability of 

population, operation is also performed on certain 
individuals. The mutation is performed on a bit-by bit 
basis, with a certain probability of mutation (Back, 
2000, Chambers, 2001, David Davis, 1999, Back, 1996). 
The GA process is shown in Fig. 2. 

 
 
 
 
 
 
 

Local minimum ≠ (0, 0) 

Global minimum at (0, 0) 
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Figure 2. Flowchart of Genetic Algorithms 
Source: “Adaptation in natural and artificial systems” by JH. Holland [24] 

 
4.2. Data 

Table 1 shows the data for five stocks rate of 
return during ten periods, note that data presented 
here is semi-real data and is extracted compatibly 
from real stock market sources. Using related 

equations, matrix 1 (table 2) is approximated, which 
is the covariance matrix between each pair of stocks. 
 
5. Findings and Discussion 

5.1. Calculations and Results 

NO 

END 

Convergence 

Start 

Initial 

Calculate the fitness function of 

Select the best 

Crossov

Mutatio

Produce the 

Select the best 

Swap the initial population with new 
population 

YES 
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Using Excel solver and above tables as 
inputs, and by solving for the optimum weights, 
which minimize portfolios risk while maximizing its 
return, wi’s would be calculated as follows:   

 
W1= 0.25         W2= 0.06          

W3=0.25          W4= 0.25     W5= 0.19 
 
Where Wi is the proportion of the portfolio’s 

value invested in security i. 
 
Substituting the above weights in eq.1 leads 

to below expected return for the constructed 
portfolio: 

 
ERportfolio= 0.3606711  or      36.06711% 
 
And their substitution in eq.2 leads to the 

following portfolio risk: 
 
VAR (Rportfolio) = 0.013949 or 

1.3949% , so 

Risk (Rportfolio) = = 
0.118105   or  11.8105%. 

 
Excel sensitivity report, limits report and 

answer report are presented in tables 3 to 5. 
Solving for the optimum weights using 

MATLAB’s Genetic Algorithms toolbox and the 
related M-files prepared by authors, results in the 
following proportions for wi’s: 

 
W1= 0.25        W2= 0.1072      

W3=0.25       W4= 0.25       W5= 0.1428 
 
This, in turn, leads to the following results: 
ERportfolio= 0.3632  or  36.32%             

and 
VAR (Rportfolio) = 0.0134  

 or  1.34%  and thus, the risk would be 
calculated as below: 

 
Risk (Rportfolio) = 0.1156     or      11.56%. 
 
Table 6 illustrates GA’s optimum 

parameters required to achieve the best set of 
solutions in the portfolio selection problem. 

In figures 3 and 4, MATLAB generated 
figures are illustrated. Best Fitness diagram, fig.3, 
plots the best function value in each generation 
versus the iteration number. Note that this figure 
presents the process GA went through to reach the 
optimum answer. Best individual column diagram, 
fig.4, plots the vector entries of the individual with 
the best fitness function value in each generation. 

Note that in both methods, the very same 
goal function is optimized and the same constraints 
are appliedi. 

 
Table 1. Data for five stocks rate of return during ten 
periods (The numbers are expressed as the 
percentage) 

Period/Stock A B C D E 

P1  40 50  -20 

P2 ¶ 37 25  -32 

P3 62 45 -30  -15 

P4 25 38 -15 95 40 

P5 30 -62 35 19 55 

P6 37 40 35 18 14 

P7 40 94 35 54 85 

P8 85 39 55 35 55 

P9 42 32 38 40 28 

P10 20 15 45 65 55 

¶ Blank in the table means that stock was not present 
in the stock exchange market during that period, 
blanks are included to represent more general and 
real cases. 

Source: Extracted from a real stock market by 
authors. 

 
 

Table 2. The covariance matrix between stocks 
(Matrix 1) 

 
Source: Calculated by Authors.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Stock/Stock A B C D E 
A 0.039898438 0.022579688 0.003015625 -

0.018106122 
-
0.011539063 

B 0.022579688 0.133756 -0.011204 0.038857143 -0.0056 
C 0.003015625 -0.011204 0.069661 -

0.035546939 
0.027695 

D -
0.018106122 

0.038857143 -
0.035546939 

0.064195918 0.01207551 
 

E -
0.011539063 

-0.0056 0.027695 
 

0.01207551 
 

0.135065 
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Table 3. Excel Sensitivity report 
    Final Reduced 
Cell Name Value Gradient 

$B$16 

Stock 
A 
weight 25% -13% 

$C$16 

Stock 
B 
weight 6% 0% 

D$16 

Stock 
C 
weight 25% -5% 

$E$16 

Stock 
D 
weight 25% -11% 

$F$16 

Stock 
E 
weight 19% 11% 

Constraints 

    Final Lagrange 
Cell Name Value Multiplier 
$H$16 Total 100% 15% 
$H$18 Total 36.06710714 0 

Source: Calculated by Authors.  
 
Table 4. Excel Limit report 

 

  Target   

Cell Name Value 

$J$41 To be opt. function  0.098067294 
 
 
 

Table 5. Excel Answer report 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 6. Best parameters for GA solver in portfolio 

optimization problem †. 
Constraints Cell Name Cell Value Formula Status Slack 

$H$16 Total 100% $H$16=1 Not Binding 0 
$H$18 Total 36.06710714 $H$18>=0 Not Binding 36.06710714 
$F$16 Stock E weight 19% $F$16<=0.25 Not Binding 0.06 

$B$16 Stock A weight 25% $B$16>=0 Not Binding 25% 
$C$16 Stock B weight 6% $C$16>=0 Not Binding 6% 
$D$16 Stock C weight 25% $D$16>=0 Not Binding 25% 
$E$16 Stock D weight 25% $E$16>=0 Not Binding 25% 
$E$16 Stock D weight 25% $E$16<=0.25 Binding 0 
$B$16 Stock A weight 25% $B$16<=0.25 Binding 0 
$C$16 Stock B weight 6% $C$16<=0.25 Not Binding 19% 

$D$16 Stock C weight 25% $D$16<=0.25 Binding 0 
$F$16 Stock E weight 19% $F$16>=0 Binding 0% 

Constraints Cell Name Cell Value Formula Status Slack 

$H$16 Total 100% $H$16=1 Not Binding 0 
$H$18 Total 36.06710714 $H$18>=0 Not Binding 36.06710714 
$F$16 Stock E weight 19% $F$16<=0.25 Not Binding 0.06 

$B$16 Stock A weight 25% $B$16>=0 Not Binding 25% 
$C$16 Stock B weight 6% $C$16>=0 Not Binding 6% 
$D$16 Stock C weight 25% $D$16>=0 Not Binding 25% 
$E$16 Stock D weight 25% $E$16>=0 Not Binding 25% 
$E$16 Stock D weight 25% $E$16<=0.25 Binding 0 
$B$16 Stock A weight 25% $B$16<=0.25 Binding 0 
$C$16 Stock B weight 6% $C$16<=0.25 Not Binding 19% 
$D$16 Stock C weight 25% $D$16<=0.25 Binding 0 
$F$16 Stock E weight 19% $F$16>=0 Binding 0% 

Source: Calculated by Authors.  

† Other parameters that may not be mentioned are 
best achieved using GA toolbox defaults. 

Source: Calculated by Authors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Best Fitness 
Source: Calculated by Authors 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Best Individual 
Source: Calculated by Authors 

Population 
type 

Double 
Vector 

Mutation 
function 

Gaussian 

Population 
size 

50 Mutation 
scale 

1 

Selection 
function 

Roulette Number of 
generation 

500 

Crossover 
fraction 

0.8 Stall time 
limit 

Infinite 

Crossover 
function 

Scattered Stall 
generations 

50 



Journal of American Science, 2011;7(11)                                                    http://www.americanscience.org 

  

http://www.americanscience.org            editor@americanscience.org 347

 
5.2. Discussion 

Comparing both applied methods, it is 
obvious that GA has better performance in both risk 
and return issues. In quantitative expressions: 

 

ERGA.constructedportfolio - ERClassic.constructedportfolio = 

0.25289% 
 

Risk(RGA.constructedportfolio)-  Risk (RClassic.constructedportfolio) 

= - 0.2505% 

 
At first glance, it might appear it is not much 

different which method to use, in other words, both 
methods have almost led to the same results and 
performance. Nevertheless, deeply looking, this is not 
true for at least two main reasons: 

 
1. In real markets, surely there are many 

stocks more than just five, on which one should make 
investment decisions. As the dimensions of the 
problem extend, heuristic methods have better 
performances (The authors are currently working on 
a 50 sample model and better performance of 
heuristics in high dimensions is crystal clear). In 
other words, the more the number of available stocks, 
more difficult and time-consuming it will be to solve 
the problem via classic methods (Application of 
heuristic methods would be certainly much easier in 
such cases).  

   
2. Non-individual portfolios -those 

constructed and managed by investment companies 
like banks and mutual funds- are usually big enough 
not to neglect 0.25289% increase in the expected 
return or -0.2505% decrease in portfolio’s risk. 

Another clue for not neglecting apparently 
small differences arises when one considers the fact 
that the only way the systematic risk can be lowered 
is to expand the definition of the “market” to include 
dissimilar markets (Hagin, 1979). Internationally 
diversified portfolios are much less risky than the 
limited ones (Solnik, 1974a, Solnik, 1974b). In such 
cases, small percentage of risk or expected return is 
representative of a relatively large amount of money. 

 
6.  Summary and Conclusions 

Markowitz demonstrated that the two 
relevant characteristics of a portfolio are its expected 
return and some measure of its risk- operationally 
defined as the dispersion of possible returns around 
the expected return. Rational investors will choose to 
hold efficient portfolios. The identification of 
efficient portfolios would require information on 
each security’s expected return, variance of return 

and covariance of returns. Finally, once prepared the 
foregoing security descriptions could be manipulated 
by portfolio optimization programs. 

Markowitz model’s main shortcomings are 
omission and ignorance of borrowing and lending 
alternatives, the enormous amounts of both human 
and computational resources it needs, its little 
application in practice when some additional features 
are relevant, increases in the costs of trading, poor 
future returns’ prediction, which is to be fed to the 
model, relying on the questionable assumptions that 
markets are efficient and investors are rational. 

To overcome the shortcomings different 
solutions are proposed by experienced practitioners 
and researchers, from which Asset allocation line, 
Single-index model, mixed-integer linear 
programming models, portfolio construction through 
nonlinear mixed- integer programming, fuzzy 
random variable consideration, and going toward 
behavioral finance, are the most important ones, 
respectively.     

Portfolio optimization methods are divided 
into two major groups, classics and heuristics. It was 
shown that in portfolio optimization problem, 
heuristic methods have better performances in 
contrast to classic methods and are more adaptable 
with the portfolio problem. It is so because heuristic 
methods do not stop solving as soon as finding a 
local optimum, they continue solving to find the 
global optimum. In other words, they are supposed 
not to “get stuck” in local optima. Since heuristic 
algorithms perform a wide random search, the chance 
of being trapped in local optima is deeply decreased. 
On the other hand, classics “get stuck” in local 
optima and cannot usually reach the global one, 
especially in high dimension problems like that of 
Markowitz in real stock markets. A portfolio 
selection problem was optimized for five stocks with 
semi-real input data and via two different methods, a 
heuristic method named genetic algorithm, and a 
classic solver. The results indicate that GA was better 
in both portfolios’ expected return and portfolio’s 
risk dimensions, though the difference seems to be 
small. Portfolio constructed via GA outperformed the 
classic-constructed portfolio. For at least two 
reasons, the small percent difference between two 
methods is found to be of high importance: 1. The 
volumes of portfolios are usually large enough not to 
neglect a small percentage, and 2. Once the number 
of stock increases, the difference between heuristic 
and classic methods’ result is increased as well. 
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i  The Goal Function used in both methods is:        

Division by 18 is used to make both terms in the same range to achieve the best possible result. Constraints are to make sure that 0% 

wi’  , the constraints are aimed at maximizing rational possible diversification, and also to guarantee that Expected Return . 

 


