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Abstract: Many human inventions are inspired by nature, such as fish swimming, bird/insect flight, etc. A basic 
consideration for the design of swimming machines is the design of propulsors. A creative design of propulsors can 
be inspired by fish locomotion. The term locomotion means that thrust is generated by undulation of fish body. 
Thus, there is no need to have an external propulsor. In this study, sub-carangiform motion, which is a well known 
locomotion and which is practiced by most fish, is simulated numerically using Lattice Boltzmann method (LBM). 
To simulate the geometry of fishlike body, the profile of a flexible NACA 0012 airfoil was used. Note, we deal here 
with an incompressible unsteady flow. Also, the results show that lattice Boltzmann method, accompany with 
modified boundary conditions for curved solid boundaries, can accurately simulate the variation of drag coefficient 
with time. The velocity profiles and vortex structures are shown to be close to other reliable numerical results. The 
results show vortex pairs in the wake of the oscillating flexible airfoil, which are very similar to Von-Kármán 
vortices. Also, the results show that lattice Boltzmann method, accompany with modified boundary conditions for 
curved solid boundaries, can accurately simulate the variation of drag coefficient with time. 
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1. Introduction 

Understanding self-propulsive phenomena 
which are practiced by fish can give us innovations 
for designing under water vehicles. Locomotion of 
fish has been always a matter of respect because of its 
diverse, complicated and interesting nature. Types of 
locomotion of fish vary according to the body 
structures, fin structures and the locations of fins on 
fish bodies. 

In this paper we are going to model the 
locomotion of a fish-like body via simulating an 
unsteady incompressible fluid flow using lattice 
Boltzmann method. This paper has two objectives:  
(a) Physical Aspect: the main objective of this 
paper is to simulate a self-propulsive phenomenon 
which is practiced by some kind of fish known as 
carangiform motion, and 
(b) Numerical aspect: The present study needs a 
numerical tool which holds some important features, 
such as: (1) A high order of accuracy at the same time 
a simple implementation, (2) An appropriate 
computational speed, and (3) The ability to simulate 
fluid flows over arbitrary bodies.  

Lattice Boltzmann method has all these 
features but it also suffers from deficiencies which 
needs to be optimized. As far as we know, a study in 
which locomotion is simulated using lattice 
Boltzmann method has not been published yet.  

 

2. Lattice Boltzmann Method 
Lattice boltzmann method has been 

constructed according to dynamics of particles and 
uses Boltzmann equation which has a mesoscopic 
concept (a concept between microscopic and 
macroscopic) instead of using Navier-stokes equations 
which has a macroscopic basis [5]. Spacial and 
temporal differencing of Boltzmann equation and 
resulting to lattice Boltzmann equation has been 
summarized in the following. Beginning from 
Boltzmann equation we have [6]: 

( ) ( ). .Df f f
Dt t

α α
α α

+ −∂
= + ∇ = Γ −Γ
∂

e
 (1)

 

Using Bhatnagar-Gross-Krook (BGK) 
approximation, the collision operator has been 
linearized:  

( )1. ( ),eqDf f f f f
Dt t

α α
α α α αλ

∂
= + ∇ = − −
∂

e
 (2) 

where ( )eqfα is Maxwell-boltzmann equilibrium 
function. Using finite difference, the material 
derivative in the left hand side of equation (2) is 
differenced as: 

( )( , ) ( , ) 1 ( ).eqDf f t t t f t f f
Dt t

α α α α
α αλ

+ ∆ + ∆ −
= = − −

∆
x e x

 (3) 
By introducing non-dimensional relaxation 

time, lattice Boltzmann equation is derived [6]:  
,tτ λ= ∆  (4) 
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( )1( , ) ( , ) ( ).eqf t t t f t f fα α α α ατ
+ ∆ + ∆ − = − −x e x

 (5) 
Equation (5) in known as lattice Boltzmann 

equation, which is separated into two steps to be 
solved numerically. One step is the collision step 
(right hand side of equation (5)) and the other is the 
streaming step (left hand side of equation (5)) of the 
distribution function ( f ). Density and velocity of the 
fluid can be obtained from distribution functions by 
these equations [7]: 

8

0
,fα

α

ρ
=

=∑
 (6) 

8

0

1 .fα α
αρ =

= ∑u e
 (7) 

 
2.1. Two-Dimensional Model Using D2Q9 Lattice 

D2Q9 lattice uses a two-dimensional nine-
velocity lattice. This method has been introduced by 
Qian et al. (1992). In this model particles are allowed 
to reside only on lattice nodes. The velocities of 
particles are limited to three values and their 
directions are limited to eight values [8] (figure 1). 

 

 
Figure 1. D2Q9 x, y velocity components [6] 
 
2.2. FH Boundary Condition 

The fraction of the intersected link in the fluid 
region is [4]:  

,f w

f b

−
∆ =

−

x x

x x  

(8) 

which is illustrated in Figure 2. 

 
Figure  2. Cartesian two-dimensional lattices and solid 
curved boundary [2] 

 
To finish the streaming step, it is clear that 

( , )bf tα x  should be calculated and then substituted 
as: 

( , ) ( , ).f b bf t t t f tα α αδ δ= + + =x x e x

 (9) 

Filippova and Hanel have obtained the value 
of ( , )bf tα x by using a linear interpolation of the 
information of neighboring nodes:  

( )( , ) (1 ) ( , ) ( , ),b f bf t f t f tα α αχ χ ∗= − +x x x 

 (10) 
where ( ) ( , )bf tα

∗ x is known as fictitious equilibrium 
function and is defined by the following equation:  

( ) 2
2 4 2

3 9 3( , ) ( , ) 1 . ( . ) . ,
2 2b f bf f f ff t t

c c cα α α αω ρ∗  = + + −  
x x e u e u u u

 (11) 
where the parameter iω  is a weighting factor specific 
for each velocity direction. In the case of the D2Q9, 

0ω  = 4/9, 1ω = 1/9, and 2ω = 1/36 where 0ω  is the 
coefficient for the rest velocity, 1ω is the coefficient 
for velocity directions with a magnitude of one (1, 2, 
3, and 4 in this case), and 2ω is the coefficient for 
velocity directions with a magnitude of  2  (5, 6, 7, 
and 8 in this case). The value of c is defined as, 
c x t= ∆ ∆ , which has a magnitude of one in this 
model.  

Filippova and Hanel have introduced the 
values of  χ  and bfu  for different values of  ∆:  

( 1) ,     (2 1) / ,bf f w χ τ= ∆ − ∆ + ∆ = ∆ −u u u  (12) 
for

 
1 2,∆ ≥

 (13) 
and               

,     (2 1) /( 1),bf f χ τ= = ∆ − −u u  (14) 
for 1 2.∆ ≤  (15) 
 
2.3. Zou, Q and He, X. Boundary Condition on a 
Flow Boundary with Fixed Velocity 

Suppose a flow boundary (take the inlet in 
Figure 3 as example) is along the y−direction, and the 
pressure (density) is to be specified on it. After 
streaming, 2f ,  3f ,  4f ,  6f  and 7f  are known, xu  

and yu are specified at inlet. (the velocity profile is 
the velocity profile of a poisson flow). 

 

 
Figure 3. Boundary nodes in inlet boundary for a two-
dimensional channel flow [10] 
 

By solving the four equations obtained from 
equations of mass, momentum and the equation 
obtained from bounce-back rule for the non-
equilibrium part of the particle distribution normal to 
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the inlet, density and other unknown distribution 
functions are obtained:  

[ ]0 2 4 3 6 7
1 2( ) ,

1 x

f f f f f f
u

ρ = + + + + +
−  

(16)  

1 3
2 ,
3 xf f uρ= +

 (17)
   

5 7 2 4
1 1 1( ) ,
2 2 6y xf f f f u uρ ρ= − − + +

 (18)
 

8 6 2 4
1 1 1( ) .
2 2 6y xf f f f u uρ ρ= + − − +

 (19) 
 

2.4. Calculating the Force on a Body 
By using the momentum-exchange method 

presented by Ladd & Verberg the force exerted on a 
surface by fluid can be evaluated [11]. The force 
exerted on a boundary can be evaluated using the 
distribution function after the collision step and the 
momentum exchange term which relates to the object 
velocity (figure 4). 

3

2

2 ( . )1( , ) [2 ( , ) ] .
2

c i w i
w i A i

s

wxt t f t
t c

ρ∆
+ ∆ = −

∆
u eF x x e

 (20) 
where the parameter iω  is a weighting factor. 

 
Figure  4.  Illustration of the Momentum-Exchange 
Method for Force Evaluation (fluid exists only outside 
of wall) [11] 

 
In order to get the total force and torque on a 

solid moving particle immersed in fluid, a summation 
of the forces is done around the boundary of a particle 
[11]: 

total
1 1( ) ( , ),
2 2wt t t t+ ∆ = + ∆∑F F x

 (21) 

total
1 1( ) ( ) ( , ).
2 2w CM wt t t t+ ∆ = − × + ∆∑Τ x x F x

 (22) 
In order to compare different boundary 

conditions with each other for a moving solid curved 
boundary at first we compare these boundary 
conditions for a stationary solid curved boundary. 

 
3. Unsteady Flow due to Translational and 
Rotational Oscillation of a Circular Cylinder 

In this part, unsteady flow over a 
translational and rotational oscillating circular 
cylinder with a phase difference between translational 
and rotational movements is going to be modeled.The 
mechanism of the flow due to this motion is the same 
as the mechanism due to locomotion of swimming 

objects. If both motions are simple harmonic, the 
flows are characterized by five dimensionless groups, 
which correspond to two sets of Reynolds and 
Keulegan–Carpenter numbers (one set for 
translational and the other for rotary motion), and the 
phase angle Φ  between these two motions [8]. 

The dimensionless quantities representative 
of amplitude  and frequency of each motion are 
usually defined as follows: 

max max2 ,      ,t t
t

t

U UAKC KC A
f D D f D

θ
θ θ

θ

π π= = = =
 (23) 

2 2

,        .t
t

f D f Dθ
θβ β

ν ν
= =

 (24) 
where ( )tKC KCθ

and ( )t θβ β are the translational 
(rotational )Keulegan–Carpenter number and Stokes 
number,  respectively; 

max max( )
t

U U
θ

is the maximum 
translational  (rotational) velocity of the cylinder 
motion, D  is the cylinder  diameter, and ν  is the 
kinematic viscosity of the fluid [9]. We have assigned 
the imposed translational motion to be in the vertical 
direction, so that 

( ) cos(2 ),t ty t A f tπ=  (25) 
while the rotational motion of the cylinder 

about its axis is described by 
( ) cos(2 ),t A f tθ θθ π= +Φ  (26) 

with counterclockwise rotation corresponding to 
positive θ . 
 
3.1. The Geometry of Flow Domain 

A computational domain extending 
30D×30D is going to be simulated. 
 

 
Figure 5. Schematic of the problem geometry and 
boundary conditions of a flow domain. 

For our study, the Keulegan–Carpenter and 
Reynolds numbers for the translational motion were 
held fixed at values of π  and 1 2200 2× , respectively. 
The frequency of the rotational oscillation was the 
same as for the translational oscillation, i.e., tf fθ= , 
while the amplitude of the rotational motion was set 
so as to make the peak tangential speed on the surface 
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of the cylinder the same as the peak translational 
speed, i.e., 1 radAθ = [9]. The phase difference 
between translational and rotational oscillations is 
considered 180 radians. The resolution of the cylinder 
diameter is 40lu which is consistent with the one used 
successfully in [1]. By choosing this number of 
lattices for the diameter of the cylinder, the domain 
size according to figure 5 is 1201×1201. 

The inlet boundary condition is a flow 
boundary condition, with a fixed parabolic velocity 
profile. 

2(0, ) 4 ( ) ,       0mU y U y H y H V= − =  (27) 
To simulate this boundary condition, Zou 

and He boundary condition on a flow boundary is 
used. 

 
3.2. Curved Solid Boundary Condition 

FH boundary condition is used for curved 
solid boundaries. 
 
3.3. Outlet Boundary Condition 

Using second-order differencing for the null 
first partial derivative of distribution function the 
following relation is obtained for the distribution 
function: 

max max 1 max 2

max

max max 1 max 2

3 4
0

2
1 (4 ).
3

i i i

i

i i i

f f ff
x x

f f f

− −

− −

− +∂
= − = ⇒

∂ ∆

= −
 (28) 

 
3.4. Numerical Results  

The vorticity contours for the instant when the 
cylinder is at its maximum vertical position and most 
negative angular displacement is shown in figure 6. 
The direction of rotation of the vortices will result in 
their being strained and directed to only one side of 
the cylinder and perpendicular to its translation axis.  

 

 
Figure 6. Vorticity contours of flow due to transitional 
and rotational oscillation of a circular cylinder. Right: 
numerical results of [9], Left: numerical results of the 
present study. 

As can be seen in figure 6 the produced 
vortices are spread out to right which exert a trust to 
the cylinder, forcing it to move to the opposite (left) 
direction. 

Drag coefficient as a function of time is 
drawn in figure 7. As can be seen from figure 7 the 
drag coefficient of this problem is always negative 
which means a force is exerted in the opposite 
direction of the flow jet, and after three time periods 
(3T) the variation of drag coefficient as a function of 
time becomes semi-steady. Trust force is a propulsion 
force, which lets the cylinder experience a locomotion 
movement. 

 

 
Figure 7. Drag coefficient as a function of time using 
FH boundary condition for moving curved solid 
boundaries 
 
4. Simulation of Fish-like Locomotion 

To model a two dimensional fish-like body a 
NACA-0012 foil is used. At first the airfoil is 
motionless and the fluid around the airfoil is 
stationary. The airfoil goes under a steady undulation. 
Due to the undulation of the airfoil a flow is produced 
round the airfoil. Through the interaction of the 
deforming body and the fluid around the body an 
external force makes the deforming body to cruise 
with a mean velocity [10]. The plunge motion of 
airfoil shown in Figure 8 can be expressed by 

0 cos( ),h h c tω=  (29) 
where h  means the instantaneous position of the 
airfoil, 0h  is the dimensionless stroke amplitude, c 
denotes the chord length of the airfoil, and ω  is the 
flapping frequency. 

Inspired by the hydrodynamics of fish-like 
swimming, the profile of the flexible airfoil varying 
over time can be expressed by: 

2
0 cos( ),y a cx tω φ= − +  (30) 

where 0a  is the dimensionless flexure amplitude and 
φ  denotes the phase angle [12] (figure 8). 

 
Figure 8. Plunge and deflection motion of a flexible 
airfoil, with 2π  phase difference between Plunge 
and deflection motions 
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4.1. Flow Domain Characteristics 
In reference [11] Wu, J., Shu, C. and Zhang, 

Y. H. have used the following flow parameters to 
control the motion of the airfoil to simulate a flow 
over a flexible airfoil: 0 00.4,  0.3,  2,h a φ π= = =  

0.4ω =  and .Re 100=  In this study we are going to use these 
parameters for our flexible airfoil. The Reynolds 
number bases on the chord length and the maximum 
velocity of the oscillation of the head of airfoil. The 
phase difference between the plunge and deflection 
motions is 2π . The drag and lift coefficients are 
defined with the following relations: 
 

2
max

,1
2

x
D

FC
U cρ

=

 (31) 

2
max

.1
2

y
L

F
C

U cρ
=

 (32) 
We appoint the resolution of the flow 

domain to 1001 × 801and the chore length of the 
airfoil is chosen to be 200lu. The coordinate of the 
head of the airfoil is adjusted to the center of the flow 
domain. 
 
4.2. Numerical Results of Flow over a Flexible 

Airfoil with a Plunge and Deflection Motion 
In figure 9 drag coefficient is shown as a 

function of time. As can be seen from figure 9 the 
majority of drag coefficient is in negative part. 
Negative nature of drag coefficient means that the 
drag force plays as a trust force and tries to propel the 
flexible airfoil. 

 
Figure 9. Drag coefficient as a function of time for a 
flexible airfoil with plunge motion for 5 time period. 

 
As can be seen from figure 9 just after one 

time period the variation of drag coefficient becomes 
periodic. In figure 10 the drag coefficient as a function 
of time is shown for just one time period for more 
illustration. As can be seen from figure 10 the drag 
coefficient is much more in negative part than is 
positive part. 

 

 
Figure 10. Drag coefficient as a function of time in 
one time period. 
 

In figure 11 the instantaneous vorticity 
contours in three sections ( T , 0.2T  and 0.4T ) of a 
time period are shown. As can be seen from figure 11 
due to undulation motion of the airfoil, vortices which 
are produced from the head of the airfoil are 
stretching from tail of the airfoil to right, so that the 
reaction of vortex stretching causes a force to the 
airfoil in the opposite direction of the stretched 
vortices and causes the airfoil to move to left. A 
propulsion force was exerted without any means of 
external sources just because of undulation motion of 
the airfoil and causes the airfoil to move in the 
forward direction. 
 

 

 

 
Figure 11. Vorticity contours in three sections (T , 
0.2T  and 0.4T ) of a time period for flow over a 
flexible moving airfoil with a plunge and deflection 
motion. 

By solving the dynamical equation of motion 
in the longitudinal direction of airfoil (x direction) 
implementing Euler’s numerical method (equation 
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(33)) the path line of the centre of mass can be drawn 
(figure 12).  

new old . xu u t F m= + ∆  (33) 
 

 
Figure 12. Path line of the centre of mass of the 
airfoil. 
 

The velocity of centre of mass of the airfoil 
as a function of time is shown in figure 13. As can be 
seen from figure 13 the velocity of the centre of mass 
of the airfoil is always negative which means the force 
exerted on the airfoil via the fluid, is a propulsion 
force and causes the airfoil to move in the forward 
direction. 

 

 
Figure 13. X-velocity component of the centre of 
mass of the airfoil. 
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