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Abstract: Our aim in the present paper is to introduce and study new types of retractions of open flat Robertson —
Walker W*model. Types of the deformation retracts of open flat Robertson —Walker W*model are obtained. The
relations between the folding and the deformation retract are deduced. Types of minimal retractions are presented.
New types of homotopy maps are deduced. New types of conditional folding are presented. Some commutative

diagrams are obtained.
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1. Introduction

Flat Robertson —Walker space represents one of
the most intriguing and emblematic discoveries in the
history of geometry. Although if it were introduced
for a purely geometrical purpose, they came into
prominence in many branches of mathematics and
physics. This association with applied science and
geometry generated synergistic effect: applied
science gave relevance to flat Robertson —Walker
space and flat Robertson —Walker space allowed
formalizing practical problems[1, 10, 11, 14, 15, 17].
Most folding problems are attractive from a pure
mathematical standpoint, for the beauty of the
problems themselves. The folding problems have
close connections to important industrial applications
Linkage folding has applications in robotics and
hydraulic tube bending. Paper folding has application
in sheet-metal bending, packaging, and air—bag
folding. Also, used folding to solve difficult problems
related to shell structures in civil engineering and
aero space design, namely buckling instability.
Isometric folding between two Riemannian manifold
may be characterized as maps that send piecewise
geodesic segments to a piecewise geodesic segments
of the same length. For a topological folding the
maps do not preserves lengths, i. e. A map3 : M —
N, where M and N are C*-Riemannian manifolds of
dimension m, n respectively is said to be an isometric
folding of M intoN, iff for any piecewise geodesic
path Y : ] - M the induced path J oY :J > Nisa
piecewise geodesic and of the same length as. If J
does not preserve length, then J is a topological
folding [2, 3, 6, 8,9, 12, 13].

A subset A of a topological space X is called a
retract of X if there exists a continuous map 7 : X —
A such
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that r(a) = a V a € A, where A is closed and X is

open [2, 3, 4,5, 6, 7] Also, a subset A of a

topological space X is a deformation retracts of X if

there exists a retraction r : X = A and a homotopy @ :

X X I - X such that:
fx, 0 =x

?(x, =7
@(a, =a,a€At

x€EX
[0, 119,12, 13, 16]

The flat Robertson —Walker WHine element
ds? = —dt? — a? (t) ( dX? — dY? — dZ?) is one
example of a homogeneous isotropic cosmological
spacetime geometry, but not the only one. the general
Robertson ~Walker W line element for a
homogeneous isotropic universe has the form

dé = —dt? — a% (t) dt?, where dl?2 is the line
element of a homogeneous, isotropic three -
dimensional space . There are only three possibility
for this. Let's now look at the open flat Robertson —
Walker W*model. In the present work we give first
some rigorous definitions of retractions, folding and
deformation retraction as well as important theorems
of open flat Robertson —Walker W*model[10, 11, 14,
15, 17].

2. Main results

Theoreml. The retractions of the open flat
Robertson ~-Walker W* model are unit hyperboloid,
hyperbolic, hypersphere, circle and minimal
manifolds .

Proof .Consider the open flat Robertson -Walker W*
model with metric
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de2 = dy?
(1D

The coordinate of the open flat Robertson -Walker
W* are

X, =sinlysi®cos @ x3=sinlycosh,

+ sinBy ( d6® + sifk® dg? )

Xy = sinly sim singk, = coshy
(2)

where the ranges are, 0 < 6 <7n,0< 0@ < 2w and
0<y<

Now, we use Lagrangian equations
d (ot aT .
E(a)-@-(pizo, 121,2,3.

to find a geodesics which is a subset of the open
flat Robertson -Walker space W% Since
T=2(7— sinfy(0 —sid0 o).
Then the Lagrangian equations for open flat
Robertson -Walker space W* are
S — (sink cosh(® “—siR0 6°)) =0 .
(3)
%( sifly 0) — (sinfy sif cod (?)2)= 0 .
(4)
i (si nBysi ROP ) = 0
(5) \
From equation (5) we obtain sinfy sifb @ =
constant say B, . if B, = 0 , we obtain the following
cases:
If initially 6 equalg org andg hence we obtain the
following geodesics unit hyperboloid H3 , H3and H3
respectively. Also, iff = g, hence we obtain the
following coordinate of open flat Robertson -Walker
space W given by
x; = sinly cos @, x, =sinlysin@ x3=0, x,
=coshy.
which is a hyperbolic H? , —x,2 + x;2 + x,2 + x32
= —1 , which is a geodesic and retraction. Now, If @
= g or % and g hence we get the unit hyperboloid
retractions H3 , B and HZ in open flat Robertson -
Walker space W respectively. Also, in a special
case if @= g or m and 32—7[ hence we get the
hyperbolic geodesics retraction HZ, H and H? in
open flat Robertson -Walker space Wrespectively.
In a special case ify = g, hence we get the
coordinate of open flat Robertson -Walker space W*
which represented by
X, =si®cos® x,= siMsin® x3 = cosb,
X, =0.
which is sphere S7 , —x,% + X% + x,2 + x32 =1,
which is a geodesic retraction. Also, If @ = 90 ,
and 3 = 90 we obtain the retraction, S = (0.si ),
cos0, 0), which is a circle S*. Again, Ify =m, we
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get the following minimal geodesic W°(0, 0, 0, 1) in
open flat Robertson -Walker space W .

In what follows, we present some cases of the
deformation retract of open flat Robertson -Walker
space W* . The deformation retract of open flat
Robertson -Walker space W*is 7 : W* X [ >W 4,
Where 1 is the closed interval [0, 1, be present as
nx, b: (sinly si® cos@, sinhsi® sing,
sinlycos®, cosh)xI—

(sinlysi®cos®, sinpsi®sin@, sinly cosb
, cosh)

The deformation retract of open flat Robertson -
Walker W* space into the minimal geodesic W? is
nim, B= (1 +h ) { sinphsi®cos®, sinp
si®sin@sinlycosd, coshy} +tan2—h{0,0,0
, 1} . where

Nim, 0 = { sinhsi® cos @, sinpsi® sing,
sinlycos®,coshy}

andn(m, B {0,0,0, 1}

The deformation retract of open flat Robertson -
Walker W* space into the hyperboloid HZ is

n(m, h = cos% { sinpsi® cos @, simpsim®
sin@sinlycosd,coshy}

+si nﬂz—h { sinhxcos @ sinh)in@,coshy}
Now , we are going to discuss the folding & of the
open flat Robertson -Walker space w*
Let & : W* > W*, where
%(X19X2’X3’X4)=
6)

An isometric folding of open flat Robertson -Walker
space W* into itself may be defined by

& :{ sinhginbcos @, sinhginbsin@, sinhy
cos 0, coshyx} - { sinhgin6cos @, sinhgin®
sin@|sinhyx co$ fcoshy}

The deformation retract of the folded open flat
Robertson -Walker space & (W*%) into the folded
geodesic WO ) is

Ng { sinhxsinB cos® , sinhxsinBsin@
Jsinhyx cog Pcoshyx} x I - { sinhginbcos @
, sinhgin&in@|sinhy co¢fcoshy}

with

Ng(m, B= (1 +h ) { sinhginbcos @, sinhy
sinGin@|sinhy co¢&oshy} + tanﬂrh {0,0,
0, 1}.

The deformation retract of the folded open flat
Robertson -Walker space § (W*) into the folded
geodesic F(H?)is

ng(m, B = cos%h { sinhxsin® cos® ,
sinhy sin® sifs®nhy co$ Pcoshy}

+si n“z—h {sinhycos @.sinh)in@ 0,coshy}.

( X1 > )§1|X3|9 X4 ) .
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Then, the following theorem has been proved.

Theorem 2. Under the defined folding and any
folding homeomorphic to this type of folding , the
deformation retract of the folded open flat Robertson
-Walker space & (W*) into the folded geodesics is the
same as the deformation retract of open flat
Robertson -Walker space W* into the geodesics.

Now, let the folding be defined by F*: W* - W4,
where
g*(X19X29X39X4—)=
(7)

The isometric folded open flat Robertson -Walker
space & (W*) is

R = {| sinhy sin® d¢os® nh)in@sing,
sinhyx cos,@oshy

The deformation retract of the folded open flat
Robertson -Walker space §* (W*) into the folded
geodesic & (H? ) is

npm b= (G —h )

, sinhy sin6 sisi@h)os 6,coshx}+tann4—h{

( |X1| > %, X3, X4—)

0,sinh)in@sinhy cos6coshy.

The deformation retract of the folded open flat
Robertson -Walker space ¥ (W*) into the folded
geodesic §* (HZ ) is

ng+ (m, b
, sinhy sin8 sisi@hy)os 6, coshy} + si an_h

Th
COS—
2

{|sinhx sih®,sinh)os 8, coshy}
Then, the following theorem has been proved.

Theorem 3. Under the defined folding and any
folding homeomorphic to this type of folding , the
deformation retract of the folded open flat Robertson
- Walker space §* (W*) into the folded geodesic is
different from the deformation retract of open flat
Robertson -Walker space W* into the geodesics .

Theorem 4 . Let H3 ¢ W* be a hyperboloid in open
flat Robertson- Walker space  which is
homeomorphic to D? ¢ R%, and r; : H®> —» H? be a
retraction . Then, there is an induced retraction r,
:{ B -B} - D! such that the following diagram is
commutative

P,
Hicwt ____, (D -pjc R?

n l lrz

H?c W+ » plc RS

Py
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{| sinhx sin® d¢os®

{| sinhy sin® dos®

Proof . Since r; : H®> - H? and r, : {D?
be defined as

ry{sinhy sin® cos®,
sinhy cos® , coshy}
sinhy sim@goshy and
r,{sin® cos® sinB sin® cos®, 0 }
={cos P , sin®,}0,0

Under the homeomorphism map P, : H®> ¢ W* -
{D?> —BcR3 andP,:H? c W* - D! c R3. This
proves that the diagram is commutative .

_B_, D!

sinhy sin6 si
{sinhy

Theorem 5. Let H> € W* be a hyperboloid which is
homeomorpic to D? € R3, and lim, : H® — H?

n—-oo

be a limit retraction. Then, there is an induced limit

retraction linr,,; : D? — D' such that the
n—-oo
following diagram is commutative
P,
H}c w* ——» {D? —fp}c R®
lim, l P, RER T

H? ¢ w* > plc RS

Proof. Since limy : H® — H? and llim Fa1 ©
n-o n+1-0

{D? —B} - D. Under the homeomorphism map P;

:H}®cW*—>{D?> —PBcR® and P,:H?*c W*

- D! < R® . This proves that the diagram is

commutative .

Theorem 6 . If the deformation retract of the
hyperboloid H® ¢ W* is D: H3 x 1 — H3, the
retraction of H3 € W*isr :H3 - H?, H c H® and
the limit of the folding of H® is 1ig, fy : H® =
H? . Then there are induces deformations retract,
retractions , and the limit of the foldings such that
the following diagram is commutative.

Proof . Let the deformation retract of H c W* is
D;: H3 x 1 — H3, the retraction of H3 x 1 is
defined by ry: (2 x 1) > H2X 1,11 s fr: Dg
(H® x 1) - H? the deformation retract of r; (
H3x 1) isDy:ry (H® x 1) - H?, the retraction
of ligop £y (B ( (H3 X 1) ) ) isgivenbyr, :
lijme fn (D (H3 x 1) ) - HY, and
1i®y10o fne1: Dy (rp (B X 1) > HY, Hisal-
dimensional space . Hence, the following diagram is
commutative .

&1 D,

(H3X 1) —» H*X 1 —p H?

D,

550

ng ,

cos @,

li Im+1-00 fm+1
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; T
li Im—w fm 2

H3 > H2 > Hl

e ligiimo fmer©Dzor; (H3X 1) =m0
lig o fn oDy

Theorem 7. Let H3 € W* be the hyperboloid, then
the relation between the folding f : H> - H3, and the
limit of the retractions 1ije ry: H® — HZ,
discussed from the following commutative diagram .
Proof . Let the folding is f; : H> - H3 , the limit of
the retractions of H® and f; ( H3 ) are 1 i o I'p :
H3 > H? and limg,q e Imeq: f; (H3) - H?,
and f, : (lig rm ( H3 ) ) — H2 Then, the
following commutative diagram.

H3 > H3
li Im—ew ™ l f1 l li Im+1-00 Tm+1
f2

. . HZ 2 )
1-€3~11Hﬂ+1—m rm+1°il(h?H) =f o limg o Iy (
H*)

Theorem 8 . Let the retraction of H3 is r : H® — H?
H? < H3, and the folding of H3 is f : H3 - H3 | then
@i-f;0 r1(H3)_ =r,0f (H?)
(ii)- opyq © ( }—iolﬁ feonig) (-
HE) ) ) ) ) = (il_iolﬁ Fiobisg)( (ry
(rze i (H3))) =+))eoy.

(faorz (fron
o )

Proof . (i) - Let the retraction of the hyperboloid in
open Robertson- Walker space H> ¢ W*is r; : H® -
H?, f; : H® - H3, the retraction of f; (H3 ) isr, : fi(
H3) — H2, and the folding of r; (H3 ) is f, : r; (H3
)—> HZ Thenf,o p(H3)=r,0 f (H3).

(i1) - Let f); o 1,;_4 and ry; o £;_4 are the compositions
between the retractions and the foldings of H3into
itself .Also, o; are the homeomorphisms .Then

faem faors llm( fai ©T2i-1)
g3 ——> H} H3 . H3 —> 2
01 03 03 On On+1
g3 ——> H} —» H} - Hi—% H?
rofi 70 f3 llm(’”21°f21 1)

Theorem 9.Given the deformation retract of H <
W* is D: H® X 1 — H3, the limit of the folding of
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H3 c wW*

H3 X I islingy g f, : H® X 1> H% x I .Then, the
following diagram is commutative.

Proof . Let the limit of the folding of ( H® x 1) is
lim e f, @ H® X 1 - H?x I, the deformation
retract of B c W* is D;: H® x I - H3, the limit of
the folding of D; (H3 X 1) islimy1-0 fmer D1
( H x 1 )H% and the deformation retract of
1ig oo fn (H3 X 1) isDy :1i g f (H3 X 1)
— H2. Hence

limy oo fin
H3x I H?x [
D,
.
llmm+1—>oo fm+1

e Dyolige tmr x 1) 1M1 fne1 0Dy
(Bx1).

Theorem 10. The composition of strong
deformation retract of the hyperboloid H3 ¢ W* is a
minimal retraction.

Proof . Now consider the following continuous map
n:H3x[0, 1> H3, such that n(x, } = B(X,ﬁ ),

then it is easy to see that

nx, 0=B(x, 0%0
n(x, l—llmB(x )—51CH3
n(y, Q—B(Y'E )—51CS1-

The deformation retract of the circle S* c S? onto
minimal retraction (0,1 ) is given in polar coordinates

by
T

2

<0<
el{6+(1't+9)r} —T <e

re1(1 r)o |9|
rge (m— e)r} i

n(r €)=(

)

T

2
i.e. Lo 1 is a minimal retraction.

Th__rem 11. Let B ¢ W be a hyperboloid in open
Robertson - Walker space which is homeomorphism
toD?c R,P,:H?® - D?, the retractionr; : H® -
H2, and the limit folding of D % is Lify D% - DL
Then they are induces retraction, limit folding, and
homeomorphism map  such that the following
diagram is commutative

—» H?c W*

N

D? c R3

lpz

DO

litf,
n-—-oo

llmn+1—>oo fn+1
D' c R®
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Proof . Let the homeomorphism map , P, : H® - D? |
and r; : H® - H? also, limf, : D? - D', the

n—-oo
retraction of r; ( H® ) is r, : H? — H?, the limit
folding of 1i iy (D?) is given by +1i nf,,,:D?
n—oo n —00
- D%andP,: 5 ( r; (H?®)— DO This proves that
the diagram is commutative.

Theorem 12. If the limit folding of the hyperboloid
H3c Wis lif:H? - H?, the retraction of H3

n-o
c W isr; : H® > H?, and the homeomorphism
map of H2 ¢ W is P, : H* » D' . Then they are
induces limit retractions, limit folding, and
homeomorphism map such that the following
diagram is commutative :

rl rz
H3c W ——» H?c W* ———» H'c W*
litf, P,
n—oo

P1 limn+1—>oo fn+1
HZ D — Dl —_—) DO

Proof . Consider the limit folding of the hyperboloid
H3c Wis lify:H? - H? the retraction of H3

n—oo
c Wisr, : H® - H?, and the homeomorphism
map of H2 ¢ W is P, : H*> —» D! | the limit
retraction of r; (H® )is lim, :H? » H', the
m-oo
limit folding of of P, (H?)
is limf,;:D*—>D%and P,: lim, ( 1y (
m-—o

n+1-o00
H?® ) ) - D° This proves that the diagram is
commutative.

Theorem 13. Let D. R: H® x I —» H? be a
deformation retract of open Robertson- Walker space.
andr; : H 3 % I > H? be a retraction , also, f :H3 x
I - H? x I be a folding . Then is an induced limit
folding nLolo ify, : H® - H? such that the following

diagram is commutative :

D.R

H}X] ———— 3
f liif,
n—oo
n
H3x] — 5 H?
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Proof . Let D. R: H® x I » H3, and the folding f :

H®x1->H?®x1I also,r; : H®> x I > H? , and the

limit folding 1i 1y : H® — H? . This proves that the
n—oo

diagram is commutative.

Conclusion

The present paper deals what we consider to be open
flat Robertson ~-Walker W*model. The retractions of
open flat Robertson —~-Walker W*model are presented
. The deformation retract of open flat Robertson —
Walker W*model will be deduced .The connection
between folding and deformation retract is achieved .
New types of conditional folding are presented. Also,
the relations between the limits of folding and
retractions are discussed .Some commutative
diagrams are presented.
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