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Abstract: In this article SIR model that monitors the temporal dynamics of a childhood disease in the presence of 

preventive vaccine is developed. The qualitative analysis reveals the vaccination reproductive number R  for disease 

control and eradication. The aim of this paper is to apply the differential transformation method (DTM) which is used to 
compute an approximation to the solution of the non-linear system of differential equations governing the problem. 
Graphical results are presented and discussed quantitatively to illustrate the solutions. 
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1. Introduction 

The purpose of this paper is to employ the 
differential transformation method (DTM) to systems 
of differential equations which describes SIR epidemic 
model. The DTM is a semi-analytical numerical 
technique depending on Taylor series that promises to 
be useful in various fields of mathematics. The DTM 
derives from the differential equation system with 
initial conditions a system of recurrence equations that 
finally leads to a system of algebraic equations whose 
solutions are the Coefficients of a power series 
solution. 
   Over the years, diligent vaccination campaigns have 
resulted in high levels of permanent immunity against 
the childhood disease among the population. 
Childhood diseases are the most common form of 
infectious diseases. These are diseases such as measles, 
mumps, chicken pox, etc. to which children are born 
susceptible, and usually contract within five years. 
Since young children are in particularly close contact 
with their peers, at school and play, such diseases can 
spread quickly. Meanwhile, the development of 
vaccines against infectious childhood diseases has been 
a boon to mankind and protecting children from 
diseases that can be prevented by vaccination is a 
primary goal of health administrators. Since 
vaccination is considered to be the most effective 
strategy against childhood diseases, the development of 
a framework that would predict the optimal vaccine 
coverage level needed to prevent the spread of these 
diseases is crucial. 
     The SIR model is a standard compartmental model 
that has been used to describe many epidemiological 
diseases ([7], [9],[11]),[13] The way several childhood 

diseases spread through a population fits into this 
framework. At time t Suppose the population consist 
of: 
S (t)-susceptible population: those so far uninfected 
and therefore liable to infection. 
I (t)-infective population: those who have the disease 
and are still at large. 
R (t)-isolated population: or who have recovered and 
are therefore immune. 

This model assumes that the efficacy of the vaccine 
is 100 per cent and the natural death rates µ in the 
classes remain unequal to births, so that the population 
size N is realistically not constant. Citizens are born 
into the population at a constant birth rate   with 
extremely very low-childhood disease mortality rate. 
We denote the fraction of citizens vaccinated at birth 
each year as p (with 0 < p < 1) and assume the rest are 
susceptible. A susceptible individual will move into the 
infected group through contact with an infected 
individual, approximated by an average contact rate 
 . An infected individual recovers at a rate  ,  and 

enters removed group. The removed group also 
contains people who are vaccinated. The differential 
equations for the SIR model are: 

 

,    (1.1) 

 ,   (1.2) 

 .   (1.3) 

We also have the relationship N = S+I+R and 
assume are all positive constant parameters. 

Adding equations (1.1)-(1.3) we obtain: 

  ,   (1.4) 
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So that we are now dealing with a varying 

total population [4]. A summary of the process is 
drawn in a flow chart shown in Figure 1. 

The groups can be scaled by population N 

using the new variables,  , and  . 

The population is now normalized, meaning 
 
s + i + r = 1; and we have the new system 

( )
di

si i
dt

     ,   (1.5) 

dr
p i r

dt
     ,   (1.6) 

 
This problem was solved by Makinde[10] 

using Adomian decomposition method (ADM) and 
Yildirim [15] using homotopy perturbation method. 

 
2.  Qualitative analysis 

We can analyses the system qualitatively by 
studying the subsystem in the closed set

  {( , ) : 0 1}s i s i      , because r does not 

appear in equations (1.5) and (1.6). A qualitative 
investigation of the subsystem described by equations 
(1.5) and (1.6) reveals that the long- term behavior falls 
into two categories: endemic or die out. 

When the disease dies out naturally, the 
solution asymptotically approaches a disease free 

equilibrium 0E of the form: 

 
    (2.1) 

The threshold that determines the stability of this 
equilibrium is the vaccination reproduction number:  

     (2.2) 

 
The disease free equilibrium is locally stable 

if  Global asymptotic stability for disease free 
equilibrium is also achieved using a Bendixson-Dulac 
argument for , i.e. there are no periodic 
solutions ([2][3]). Equation (2.2) also reveals that there 
is a critical vaccination proportion, 

Above which the disease free 
equilibrium is stable, i.e.  Thus, in order to 
successfully prevent disease, the vaccination 
proportion should be large enough. When the disease 
free equilibrium is unstable, there exists an endemic 
equilibrium of the form: 

 

                 (2.3) 

 

 
 
From equation (2.3) it Very obvious that 

 will only exist provided  . The eigenvalues 
  of the Jacobian matrix evaluated at the endemic 

equilibrium   is given as: 

(2.4)  

The endemic equilibrium  is locally asymptotically 
stable provided: 

  ,       (2.5)  

   i.e. the eigenvalues are complex with negative real 
part and   can be classified as a spiral sink. This 
behavior can be interpreted as follows; for initial low 
levels of infectives, the numbers of susceptible build. 
Then, the number of infectives begins to increase until 
that process is faster than the number of susceptible 
being added to the population. Eventually, there are too 
few people to infect, the outbreak ends, and the number 
of susceptibles being to increase again.  
3. Basic definitions of differential transformation 
method 
    Pukhov [12] proposed the concept of differential 
transformation, where the image of a transformed 
function is computed by differential operations, which 
is different from the traditional integral transforms as 
are Laplace and Fourier. Thus, this method becomes a 
numerical-analytic technique that formalizes the Taylor 
series in a totally different manner. Differential 
transformation is a computational method that can be 
used to solve linear (or non-linear) ordinary (or partial) 
differential equations with their corresponding 
boundary conditions. A pioneer using this method to 
solve initial value problems is Zhou [16] , who 
introduced it in a study of electrical circuits. 
Additionally, differential transformation has been 
applied to solve a variety of problems that are modeled 
with differential equations [6], [14], [1], [8]: 
     The method consists of, given system of differential 
equations and related initial conditions; these are 
transformed into a system of recurrence equations that 
finally leads to a system of algebraic equations whose 
solutions are the coefficients of a power series solution.  
    For the sake of clarity in the presentation of the 
DTM and in order to help to the reader we summarize 
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the main issues of the method that may be found in 
[16]. 
Definition 3.1 A differential transformation Y(k) of 
function y (x) is defined as follows [5] 

     (3.1) 

   In (3.1), y(x) is the Original function and Y(k) is the 
transformed function. Differential inverse transform of 
Y(k) is defined as follows 

     (3.2) 
In fact. From (3.1) and (3.2), we obtain 

    (3.3) 

    Equation (3.3) implies that the concept of 
differential transformation is derived from the Taylor 
series expansion. 
    From Equation (3.1) and (3.2), it is easy to obtain 
the following mathematical operations: 

1- If  then  

 . 

2- If  then  is a 

constant. 

3- If  ,then  

 . 

4- If  then 

  . 

5- If  then 

 Y  , δ is the 

Kronecker delta . 
6- If  then 

       
0 0

k k s

s m

Y k U s V m W k s m


 

  
. 

4. The operation properties of differential 
transformation 
   If x (t) and y (t) are two uncorrelated functions with 
time t where X (k) and Y(K) are the transformed 
functions corresponding to x(t) and y(t) then we can 
easily proof the fundamental mathematics operations 
performed by differential 
Transformation and are listed as follows [1]: 
     (1) Linearity. If X (k) = D[x(t)] , Y(k) = D[y (t)] and 

 and  are independent of t and k then 
        (4.1) 

Thus, if c is a constant, then 

  [ ]D c c k
 where  is the kronecer delta function.  

    (2) Convolution. If 

             1 1,  ,   z t x t y t x t D X t y t D Y t            

 And   denote the convolution and Symbol D 
denoting the differential transformation process. Then 

  
         (4.2) 

If  then 

  

   (4.3) 
 
The proof of above properties is deduced from the 
definition of the differential transformation. 
5. Application 
    By using the fundamental operations of differential 
transformation method. We obtained the following 
recurrence relation to the system (1.5) - (1.7) with 
respect to time t one gets 

           
0

1
1 1

1

k

l

S k p k S l I k l S k
k

  


 
      

  
 (5.1) 

         
0

1
1

1

k

l

I k S l I k l I k
k

  


 
     

  
  (5.2) 

 (5.3) 

We consider the following values for parameters into 
four cases: 
Case 1 

       Initial population of s(t) . who are  
                 Susceptible. 

     Initial population of i(t) . who are  
                 infective. 

    Initial population of r(t) . who are  
                 Immune. 

Rate of change of susceptible population  
               to infective population. 

Rate of change of infective  population  
               to immune population. 

 Constant birth rate. 
  The fraction of citizens vaccinated at birth 

each year.  
From the initial condition  

  we have    
  and from equations (5.1) – (5.3) 

we have 
 

 

  

  
Therefore, the closed form of the solution can be easily 
written as: 
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Case 2 

0.8      Initial population of s(t) . who are  
                 susceptible. 

  Initial population of i(t) . who are  
                 infective. 

    Initial population of r(t) . who are  
                 immune. 

Rate of change of susceptible population  
               to infective population. 

Rate of change of infective  population  
               to immune population. 

 Constant birth rate. 
  The fraction of citizens vaccinated at birth 

each year. From the initial condition 
 we have 

    and from 
equations (5.1) – (5.3) we have 

  

   

   
Therefore, the closed form of the solution can be easily 
written as: 

  

,  

  . 
Case 3 

0.8    Initial population of s(t) . who are  
                 susceptible. 

  Initial population of i(t) . who are  
                 infective. 

    Initial population of r(t) . who are  
                 immune. 

Rate of change of susceptible population  
               to infective population. 

Rate of change of infective  population  
               to immune population. 

 Constant birth rate. 
  The fraction of citizens vaccinated at birth 

each year. From the initial condition  
 we have 

    and from 
equations (5.1) – (5.3) we have 

     

   

   
Therefore, the closed form of the solution can be easily 
written as: 
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,  

  . 
Case 4 

0.8    Initial population of s(t) . who are  
                 susceptible. 

  Initial population of i(t) . who are  
                 infective. 

    Initial population of r(t) . who are  
                 immune. 

Rate of change of susceptible population  
               to infective population. 

Rate of change of infective population  
               To immune population. 

 constant birth rate. 
  The fraction of citizens vaccinated at birth 

each year. From the initial condition  
 we have 

    and from 
equations (5.1) – (5.3) we have 

     

   

   
Therefore, the closed form of the solution can be easily 
written as: 

  

,  

   
The approximate solutions S(t) , I(t) and R(t) are 
displayed in Figs. 2-5, respectively. In each figure four 
different values of    and p are 
considered. 

 

 

 

 
6. Conclusions 

  In this paper, SIR epidemic model with constant 
vaccination strategy are solved numerically using the 
DTM for approximating the solutions. This method is a 
powerful tool which enables to find analytical solution 
in case of linear and non- linear systems of differential 
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equations. This method is better than numerical 
methods, since it is free from rounding off error. In the 
present paper, the method yields a series solution 
which converges faster than the series obtained by 
another method (see Refs. [10], [15]) The basic 
reproductive rate, , is derived. If , the disease-
free equilibrium is globally stable so that the disease 
always dies out, and if , the disease-free 
equilibrium becomes unstable. 

Figure 2 describes case 1 and shows the impact of 
high-vaccination coverage on the disease free initial 
population groups. As expected, the population of the 
susceptible group decreases with time while that of the 
removed group gradually increases due to inclusion of 
vaccinated susceptible group.  

figure 3 describes Case 2 and illustrates the 
impact of high- vaccination coverage on the initial 
population groups with low level of infective group. 
The population of the susceptible and infective group 
decrease with time while that of the removed group 
increases due to inclusion of vaccinated and recovered 
people with permanent immunity and the disease 
outbreak ends. 

Figure 4 describes Case 3 and illustrates the effect 
of low- vaccination coverage on the initial population 
groups with low level of infective group. The 
population of the susceptible group decrease with time 
A small increase in the population of removed group is 
also noticed  

Fiure5 describes Case 4 and illustrates the impact 
of initial low levels of infective group on the 
vaccination free population. As expected, the 
population of susceptible group decreases while that of 
infective group temporally increases. The disease 
rapidly spread to the entire population. The only 
contribution to removed group is the very small 
proportion of recovered people with permanent 
immunity. 
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