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Abstract: Nonlinear characteristic and internal behavior of the Proton Exchange Membrane (PEM) Fuel Cells under 
different load conditions is of paramount importance. This paper presents an adaptive neural controller based on a 
back-propagation algorithm for maximum power control of PEM fuel cell system. The system consists of a buck-
boost converter connected to the fuel cell. The adaptive neural controller receives the error and change of error 
signals as inputs during load changes and generates the DC-DC converter duty cycle. By using the inference, the 
duty ratio of the buck-boost converter is controlled so that the fuel cell can provide the maximum power. In this 
paper the dynamic model for proton exchange membrane fuel cells using ten parameter model is used. The model 
has been implemented in MATLAB/SIMULINK. Both the double-layer charging effect and the thermodynamic 
characteristic inside the fuel cell are included in the model.  
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1. Introduction 

Proton Exchange Membrane fuel cells show 
great promise for use as distributed generation 
sources. Compared with other DG technologies, such 
as wind and photovoltaic generation, PEM fuel cells 
have the advantage that they can be placed at any site 
in a distribution system, without geographic 
limitations, to achieve the best performance. Electric 
vehicles are another major application of PEM fuel 
cells. The increased desire for vehicles with less 
emission has made PEM fuel cells attractive for 
vehicular applications since they emit essentially no 
pollutants and have high-power density and quick 
start.  
             PEM fuel cells are good energy sources to 
provide reliable power at steady state. So the PEM 
fuel cells can decrease the demand of electric energy 
by using operating point which provides maximum 
power all the time. Since the current-voltage 
characteristic of the fuel cell is nonlinear, then the 
tracking control of the maximum power is a 
complicated problem. In order to overcome this 
problem, many tracking control strategies have been 
proposed such as in Perturbation [1]: An observe 
method is used to obtain maximum power for fuel 
cell in fuel cell/battery hybrid power system. In [2] a 
Maximum Efficiency Point Tracking (MEPT) 
algorithm based on the perturbation and observation 
method is proposed for finding the optimal air supply 

rate to maximize the net-power generation of FC 
system. 
            An adaptive fuzzy logic controller for 
maximum power control of grid-connected solid 
oxide fuel cell system is presented in [3]. In this 
paper an adaptive neural controller based on a back-
propagation algorithm is used to extract maximum 
power point from PEM fuel cell stack under partial 
load insertion and rejection test. Dynamic analysis of 
PEM fuel cell including thermodynamics of the cell 
and double layer charging effect by using ten 
parameter model is presented in simulation by 
“Matlab/Simulink”. Partial load insertion and 
rejection test is presented to simulate the behavior of 
the PEM fuel cell under different loading conditions.  
               This paper is organized as following: The 
basic operation of the PEM fuel cell and the dynamic 
model to execute design and analysis of adaptive 
neural controller are derived in Section 2. The 
adaptive neural network controller is used to achieve 
maximum power which is described in Section 3. 
Simulation results from the PEM fuel cell system is 
presented in Section 4. Finally, the conclusion is 
stated in section 5. 

 
2. Fuel Cell Basic Operation 
              A PEM fuel cell converts the chemical 
energy of fuel hydrogen (H2) and oxidizer oxygen 
(O2) in to electrical energy. The typical PEM fuel cell 
stack is illustrated in Figure 1. On the side of the cell 
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in Figure 1(b), referred as anode, the fuel is supplied 
under certain pressure. The fuel for this model is a 
pure gas H2. The fuel spreads through electrodes until 
reaches the catalytic layer of the anode where it 
reacts to form protons and electrons as described by 
equation 1.The protons are transferred through the 
electrolyte (solid membrane) to the catalytic layer of 
the cathode. 

  eHH g 22)(2

                                                  

 

  On the other side of the cell, the oxidizer flows in 
the channels of the plate and it spreads through the 
electrode until it reaches the catalytic layer of the 
cathode. The oxygen is consumed with the protons 
and electrons and the product, liquid water, is 
produced with residual heat in the surface of the 
catalytic particles. The electrochemical reaction that 
happens in the cathode is: 
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Then the full chemical fuel cell reaction is: 

energyelectricalheatOHOH  222
2
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Figure 1. (a) Schematic diagram of fuel stack model, 
(b) Fuel cell structure. 

 
 

2.1 Ten Parameter Model 
              Ten parameter model is based on the 
following initial assumptions: 

The chemical reactions in the polymeric 
membrane are instantaneous: 

The voltage across the cell terminals is given by 
the following equation [4-8]: 

concohmicactNernstfc vvvEv 

thermodynamic potential of the cell and it represents 
its reversible voltage, when losses are not considered 
in the process of electrical energy production without 
load. Vact is the activation voltage drop due to the 
activation of the anode and the cathode, Vohmic is the 
ohmic voltage drop, a measure of the ohmic voltage 
associated with the conduction of the protons of solid 
electrolyte and internal electronic resistance and Vconc 
represents the voltage drop resulting of the 
concentration or transport of mass of oxygen and 
hydrogen. The Nernst voltage for given temperature 
T, oxygen pressure, PO2, and hydrogen pressure, PH2, 
is given by the following equation [7], [10]:
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The hydrogen and the oxygen partial 
pressures are calculated as in [7], [8]. 
              The influence of fuel and oxidant delays on 
the fuel cell-output voltage during load transients can 
be written as [6]: 
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Converting (6) to the Laplace domain, we obtain: 
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Where λe is constant factor, τe is the overall flow 
delay time and this voltage is considered to be 
subtracted from the right side of (5).   
               The activation voltage drop including anode 
and cathode can be calculated by [7], [10], and [11]: 





  )(ln4)(ln 2321 fcOact iTCTTv 

    
(8)  

in which: ifc is the stack current (A), T is the stack 
temperature (K), ζ1, ζ2, ζ3 and ζ4 are empirical 
coefficients given in table 1, A is the cell area 
(cm2),CH2 is the hydrogen concentration in mol.cm-3 

and CO2 is the oxygen concentration on the cathode in 
mol.cm-3 [4].

 
 

The ohmic voltage drop is given by:  
)( cmfcohmic RRiv 
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Where Rm is the equivalent resistance of the electron 
flow and Rc is the proton resistance considered as 
constant [1], [4]: 

A

L
R m

m



                                             

(10)    

 In which L is the thickness of the membrane (cm), A 
is the membrane active area (cm2) and ρm is the 
specific resistivity for the electrons flow (Ω.cm).  
The concentration voltage drop can be calculated 
from the following equation: 

)exp(nimvconc 
                                  

(11)   

Where m and n are empirical coefficients [4], [11], i 
is the stack current density (A/cm2). 
 
2.2 Double-layer Charging Effect 
              In the PEM fuel cell, the two electrodes are 
separated by a solid membrane (Figure 1(b)) which 
allows only the H+ ions to pass, but blocks the 
electron flow. The electrons will flow from the anode 
through the external load and gather at the surface of 
the cathode, to which the protons of hydrogen will be 
attracted at the same time. Thus, two charged layers 
of opposite polarity are formed across the boundary 
between the porous cathode and the membrane. The 
layers, known as electrochemical double layer, can 
store electrical energy and behave like a super 
capacitor. The equivalent circuit of fuel cell 
considering this effect is given in Figure 2. In this 
circuit, C is the equivalent capacitor due to the 
double-layer charging effect. Since the electrodes of 
a PEM fuel cell are porous; the capacitance C is very 
large and can be in the order of several Farads. Ract 
and Rconc are equivalent resistances of activation and 
concentration voltage drops. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Equivalent electrical circuit of the double-
layer charging effect inside the PEM fuel cell. 

 
The voltage across C is [9]: 
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c
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The double-layer charging effect is integrated into the 
modeling, by using Vc instead of Vact and Vconc , to 
calculate Vcell. 
The fuel-cell output voltage now turns out to be: 

cohmicNernstcell VvEV 
                        

(13)   
 

And the stack fuel cell voltage can be calculated as: 

cellcell VNV 
                                           

(14)  
 

Where Ncell is the number of cells in the stack.  
 
      2.3 Thermodynamics of the fuel cell 
              During transitions, the temperature of the 
fuel cell will rise or drop according to the following 
equation [4], [6]: 

   fcellNernstt TTHVEi
dt

dT
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(15)  

 

Where Ct is the thermal capacity of whole fuel cell 
volume, H is the thermal transmission coefficient for 
the whole fuel cell surface and Tf = 30+273.15 Kº.   
The instantaneous electrical power supplied by the 
cell to the load can be determined by the equation 
[7]: 

IVP cellFC 
                                        

(16)    

The FC efficiency can be calculated from the 
equation [7]: 

m
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        Where μf is the fuel utilization coefficient, 
generally in the range of 95%. Vm is the maximum 
voltage that can be obtained using the Higher Heating 
Value (HHV) for the hydrogen enthalpy. The 
electrochemical potential (standard potential) 
corresponding to the HHV is 1.481 V per cell. 

 
3. Adaptive Neural Network (ANN) Controller 
              Neural networks become indispensable tools 
in many areas of engineering and are continuing to 
receive much attention in Maximum Power Point 
Tracking (MPPT). An ANN controller, based on 
back-propagation algorithm, is used for maximum 
power point tracking. The input signals are the error 
(error between output voltage of the buck-boost 
converter and reference voltage) and the change of 
error, and the output signal is the duty cycle of the 
converter. The configuration of the proposed feed-
forward neural network controller is shown in Figure 
3. The network consists of three layers: an input, a 
hidden, and an output layer. The numbers of nodes 
are two, four and one in the input, hidden and output 
layers respectively. The input signals are passed to 
the nodes in the hidden layer then to the output layer 
which provides the duty cycle of the buck-boost 
converter D. The sigmoid activation function is 
utilized in the hidden layer while the linear transfer 
function is utilized in the output layer. Learning 
process for ANNC is defined as change in connection 
weight values that result from capture of information. 
ANN learning is done using the backward 
propagation algorithm which cycles through two 
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distinct passes, a forward pass followed by a 
backward pass through the layers of the network. Let 
us denote the weight of the connection from node i to 
node j by wij . The values of wij are initialized to 
small numbers in the range ±0.05. These weights are 
adjusted to new values in the backward pass. This 
phase begins with the computation of the error at 
each neuron in the output layer. The popular error 
function is the squared difference between the output 
of the node k ok and the target value for that node yk.  

 

 
Figure 3.Feed-forward neural network controller. 

 
              For each output layer node, the error term is 
computed as: 

          kkkkk

 These errors are used to adjust the weights of the 
connections between the last-but-one layer of the 
network and the output layer. The new value of the 
weight wjk of the connection from node j to node k is:  

     nwnwnw jk
old
jk

new
jk

jk  is the correction to the synaptic 

weight  nwold
jk

jkkjjkjk

jk  is the learning rate, in the range of 0.1 to 

0.9,   is the momentum constant and  nk  is the 

local gradient. 
 

4. Simulation Results 
              The fuel stack power system configuration is 
shown in Figure 4. The system consists of fuel stack, 
DC-DC converter, load, and controller for MPPT 
(ANN controller). For validation of the model, the 
fuel stack model SR-12 modular PEM Generator was 
simulated. The parameters used for this simulation 
are presented in Table 1. 
              For the determination of the model 
characteristics, a load variation have been simulated 
in a given time range (namely 10000 seconds) 
leading the stack from a no load to a full load 
condition. 

 

 
Figure 4. Fuel stack power system configuration. 

  
              Figure 5(a) shows the power – voltage-
current curves of the stack with maximum power 
1.07 KW versus current density Figure 5(b) shows 
efficiency curve of the stack start from 79% at very 
low current density to 16% at high current density.   
 

 
 
Figure 5(a). Power, voltage and current curves of the 

stack 
 

 
Figure 5(b). Efficiency curve of the stack 
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Maximum power tracking under partial load 
insertion and rejection test. 
              Figure 6 depicts the load current for test of a 
partial load insertion followed by load rejection and 
shows the curve of the resulting voltage. Initially, the 
stack supplies 15 A to the load; after 5 seconds of 
simulation, the current is increased to 30 A, staying at 
this value until the simulation time reaches 10 
seconds, the stack current is decreased to 15 A for 
another 5 seconds and increase again to 40 A in the 
same period. Finally, the load current is decreased 
again to 15 A until the end of the simulation (t = 25 
seconds). It can be noticed that there is more 
response attenuation in the load insertion than in the 
load rejection, as expected. The values of the voltage 
are 38.58 V before the load increase, 34.52 V, and 
31.55 V during the load pulses of 30A and 40A and, 
again, 38.58 V when the current is decreased. These 
values are obtained after having ceased the transient 
regime.

 
Figure 6. Stack current and voltage for partial load 

insertion and rejection test. 
 

              Figure 7 presents the power response and the 
stack efficiency. A peak can be observed at the load 
insertion instant with a maximum value of 1362 W. 
When the load is decreased, the power presents a 
minimum value of 549W. The power steady state 
value is 579W for a current of 15A, 1038W for a 
current of 30A and 1262 W for a current 40A and the 
stack. The steady-state values for the efficiency are: 
51.5% for a current of 15 A, 46 % for a current of 30 
A and 42% for a current 40 A. It can be noticed that 
there is a significant reduction in the efficiency for 
variations of the demanded current, which should be 
taken into consideration when one evaluates a certain 
system. 
              Under partial load insertion we used an 
ANN controller to extract the maximum power from 
PEMFC stack as shown in Figures 8 and 9. The 
output power of the stack by using ANNC under 

different load conditions is tracking the reference 
power as shown in Figure 8. 
 

 
Figure 7. Stack power and efficiency for partial load 
insertion and rejection test. 

 
Figure 8. Stack output and reference power for partial 

load using ANN controller. 

 
Figure 9. Stack output and reference voltages. 
 
              The output voltage of the converter under 
different loading condition of the stack follows the 
reference voltage value corresponding to maximum 
power points of the stack as shown in Figure 9.  
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5. CONCLUSIONS 
              This paper has presented maximum power 
tracking of PEM fuel cell stack power system using 
adaptive feed-forward neural network controller 
based on back-propagation algorithm under partial 
load insertion and rejection test. The Ten parameter 
model is used for dynamic analysis of PEM fuel cell. 
As a matter of fact, the lower the parameter number 
is, the easier the simulations are, but at the same time, 
the gap respect to the real behavior of the real stack 
increases. 
              The partial and total load insertion and 
rejection tests demonstrated that the FC output 
voltage present a component which is directly related 
to the load current, known as the ohmic over-
potential. This varies instantly with the variation of 
the current. There are still two other components 
which are the activation and the concentration over-
potential, which are responsible for the attenuation of 
the voltage variation as a function of the current 
variation through the cell. Such dynamic voltage 
variation has significant reflexes on the supplied 
power. The simulated results show that the ANN 
controller is capable of tracking Maximum power 
point and gives a good performance for FC system 
with this type of converter under partial load 
conditions. 

 
APPENDIX 

 
Table 1.  Parameters of the SR-12 Modular PEM 

Generator. 
Param. Value Param Value 

T 323 k n 48 
A 62.5 cm2 ζ1 -0.948 
L 25 μm ζ2 0.00286+0. 0002 

ln(A)+(4.3·10−5) 
ln(CH2). 

PH2 1.47628 atm ζ3 7.22e-5 
PO2 0.2095 atm ζ4 -1.0615e-4 
RC 0.0003 Ω ψ 23 
Imax 42 A jmax 0.672 A/cm2 
Ct 22000 H 40 
λe 0.0033 τe 80 
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