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Abstract: Support Vector Machine is a supervised computer learning algorithm which is originated from Statistical 
Learning Theory and is used for both classification and regression tasks in wide variety of engineering problems. 
SVM implementations show that it gives rise to more accurate results rather than neural networks and statistical 
methods in most applications. Furthermore, Support Vector Machine is more convenient for situations where the 
populations are small and non-linear. The basic ideas behind the Support Vector Machine algorithm, however, can 
be explained without ever reading an equation. So in this paper, a brief description of Support Vector Machine 
method is first brought and after that some important implementations in petroleum engineering are discussed 
shortly. 
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1. Introduction 

The last decade has witnessed noticeable 
progresses in the study and application of intelligent 
systems as robust tools for extracting quantitative 
formulation between two sets of data (inputs/outputs) 
that have an underlying dependency in the petroleum 
industry. Several studies done by open-minded 
researchers indicate that intelligent systems are in 
the vanguard of potent tools for solving complicated 
petroleum problem in both regression and 
classification approaches (Todorov et al., 1997; 
Cuddy, 1998; Balch et al., 1999; Trappe and 
Hellmich, 2000; Nikravesh and Aminzadeh, 2001; 
Wong and Nikravesh, 2001; Russell et al., 2003; 
Nikravesh and Hassibi, 2003; Saggaf and Nebrija, 
2003; Russell, 2004; Soubotcheva and Stewart 2004; 
Zahuczki and Barany 2005; Aristimuno and Aldana, 
2006; Soubotcheva and Stewart, 2006;  Kadkhodaie-
Ilkhchi et al., 2009).  

Arelatively new promising method for 
learning separating functions in pattern recognition 
(classification) tasks or for performing functional 
estimation in regression problems is the Support 
Vector Machine (SVM) which is originated from 
Statistical Learning Theory (SLT) developed by 
Vapnik and Chervonenkis. SVMs are supervised 
machine learning algorithm that have been 
introduced in the framework of Structural Risk 
Minimization (SRM ) and in the theory of Vapnik- 
Chevronenkis (VC) bound and are especially suitable 
for use with non-linear multiattributes. For the cases 
where the populations are small (i.e., only a few well-

seismic attribute pairs) statistical significance may be 
impossible to achieve and neural network can be 
easily over trained and result in “over fitting” and 
poor predictions in validation trials, SVM has good 
performance on unseen data (good generalization). 
(Li et al., 2000; Lu et al., 2001; Choisy and Belaid, 
2001; Gao et al., 2001; Kim et al., 2001; Ma et al., 
2001; Van Gestel et al., 2001; Li, 2005, ; Yanzhou et 
al., 2010). 

The basics of the SVM algorithm, however, 
can be explained without ever reading an equation 
and one need only to grasp basic concepts. Therefore, 
in this paper, a brief description of SVM methods and 
its fundamental concepts are clarified first and 
subsequently, some important implementations in 
petroleum engineering are shortly discussed. 
 
2. Support vector Machine 

Experimental data modeling is relevant to 
many engineering applications. For build up model of 
a system, the process of induction is used and it is 
tried to infer the response that have to be observed. 
Because of its observational nature, data obtained is 
finite and sampled; typically this sampling is non-
uniform and due to the high dimensional nature of the 
problem the data will form only a sparse distribution 
in the input space (Gunn, 1998). Traditional neural 
network approaches are objected to difficulties with 
generalization, yielding models that can overfit the 
data. This is because of the optimization algorithms 
used for parameter selection and the statistical 
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measures used to select the ’best’ model (Gunn, 
1998). 

A relatively new promising method for 
learning separating functions in pattern recognition 
(classification) tasks or for doing functional 
estimation in regression problems is the SVM which 
is originated from Statistical Learning- learning from 
experimental data- Theory (SLT) developed by 
Vapnik and Chervonenkis. Like neural networks and 
decision tree learning, SVMs are supervised machine 
learning algorithm i.e. it is a machine learning 
technique for creating a function from training data. 
The task of the supervised learner is to predict the 
value of the function for any valid input point after 
having seen a finite number of training examples 
(Parrella., 2007). The formulation of SVM sustains 
the Structural Risk Minimization (SRM) principle, 
which minimizes an upper bound on the expected 
risk and has been shown to be superior to traditional 
Empirical Risk Minimization (ERM) principle which 
minimizes the error on the training data and used by 
conventional neural networks (Gunn et al., 1997, 
Gunn., 1998). This difference which is the 
destination in statistical learning causes greater 
ability of SVM for generalization tasks. 

SVMs were first formulated for the 
classification problem solving, but recently they have 
been developed to the regression problems (Vapnik et 
al., 1997). The term SVM is typically used to 
classification description with support vector 
methods and support vector regression is used to 
describe regression with support vector methods. 
However, in this study the term SVM will refer to 
both classification and regression methods, and the 
terms Support Vector Classification (SVC) and 
Support Vector Regression (SVR) will be used for 
specification. 

There are some principles, such as Structural 
Risk Minimization and VC Dimensions which are the 
basis of SVM but they may be not interesting and 
necessary to who just wants use and apply SVM 
Algorithms. So here, they are omitted and for 
detailed description, these issues are referred: 
Weston, 1998; Gunn, 1998; Kecman, 2001; Campbell 
and Ying, 2011. Furthermore, it is declared that, to 
understand the essence of SVM, the grasp of four 
basicconcepts is necessary: (i) the separating 
hyperplane, (ii) the maximum-margin hyperplane, 
(iii) the softmargin and (iv) the kernel function 
(Noble, 2006). 

In SVM literature, a predictor variable is 
called an attribute, and a transformed attribute that is 
used to define the hyperplane is called a feature. 
(DTREG Tutorial, 2003) 

The fundamental of the SVM is to map the 
original data into a higher dimensional feature space 

by Kernel functions. The goal of SVC modeling is to 
find the optimal hyperplanein feature space, that 
separates clusters of vector in such a way that cases 
with one category of the target variable are on one 
side of the plane and cases with the other category 
are on the other size of the plane(Hawley, Madden, 
2005). In SVR the goal is to find a regression 
function which has at the most ε deviation from 
actually obtained targets of all training data in feature 
space (Fu and Cheng, 2011). 

 
2.1 Support Vector Classification (SVC) 

Assume the task is to do classification for a 
simple 2-dimensional example and the data has a 
categorical target variable with two categories (e.g. 
Limestone and Sandstone) and there are two 
predictor variables with continuous values (e.g. two 
seismic attributes). If the data points are plotted using 
the value of one predictor on the X axis and the other 
on the Y axis it may be like the Figure 1. One 
category of the target variable is represented by 
rectangles while the other category is represented by 
ovals. In this idealized example, the cases are 
completely separated. The SVM analysis attempts to 
find a 1-dimensional hyperplane (i.e. a line) that 
separates the cases based on their target categories. 
There are an infinite number of possible lines; two 
candidate lines are shown in Figure1. 

 

 
Figure 1. Data separation in SVC for two 
dimensional and margin illustration (DTREG 
Tutorial, 2003). 

 
The dashed lines drawn parallel to the 

separating line, mark the distance between the 
dividing line and the closest vectors to the line. The 
distance between the dashed lines is called the 
margin. The vectors (points) that constrain the width 
of the margin are the support vectors. An SVC 
analysis finds the line (or, in general, hyperplane) 
that is oriented so that the margin between the 
support vectors is maximized. In the Figure 1, the 
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line in the right panel is superior to the line in the left 
panel. (DTREG Tutorial, 2003) 

Unfortunately, this is not commonly the 
case, so SVM must deal with (1) more than two 
predictor variables, (2) separating the points with 
non-linear curves, (3) handling the cases where 
clusters cannot be completely separated, and (4) 
handling classifications with more than two 
categories. (DTREG Tutorial, 2003) 

In the cases with three predictor variable, the 
third value can be plotted on a third dimension so the 
plot ofthe points is in a 3-dimensional cube (case 1) 
and the points can be separated by a 2-dimensional 
plane.In general, the data points in N-dimensional 
space can be separated by a (N-1)-dimensional 
hyperplane. 

When the two set data cannot be separated 
with a straight line, flat plane or an N-dimensional 
hyperplane and they just can be divided by a 
nonlinear region in input space (case 2), SVM utilizes 
kernel function to map the data into a another space 
which names feature space and a hyperplane can be 
used to do the separation there and this results in a 
nonlinear curves fitting to the data in original input 
space (Figure 2). Kernel mapping function which is 
very powerful concept allows SVC to perform 
separation even with very complex boundaries 
(Weston, 1998). 
 

 
Figure 2. Mapping data from input space into feature 
space by Kernel function (Ф). B1 and B2 are two 
classes of data. (DTREG Tutorial, 2003) 
 

Where the data set contains error- like many 
real datasets-, perfect separation may not be possible, 
or it may result in a model with so many feature 
vector dimensions which cause over fitting i.e. the 
model does not generalize well to other data. For 
these cases, SVC algorithm was customized by 
adding a soft margin term to be able to consider the 
errors in the data by allowing a few false expression 
profiles to be on the wrong side of the separating 
hyperplane without affecting the final result (case 3). 
For preventing the occurrence of too many 

misclassifications, a user specified parameter, C, 
which is called cost parameter is introduced that 
controls, roughly, how many examples are permitted 
to violate the separating hyperplane and how far 
across the hyperplane they are allowed to go. This 
soft margin parameter specifies a trade-off between 
hyperplane violations and the size of the margin and 
permits some misclassifications. The error for 
misclassified point is the distance from the point to 
the hyperplane multiplied by the cost factor C and 
technically, C is the cost of the sum of the distances 
of wrong-size points from the margins. Increasing the 
value of C increases the cost of misclassifying points 
and forces the creation of a more accurate model that 
may not generalize well (DTREG Tutorial, 2003). 
 

 
Figure 3: non separable data sets. use line separation 
but admit training errors. (DTREG Tutorial, 2003) 
 

Where the target variable has more than two 
categories (case 4), some methods are suggested but 
two are the most common:(1) “one against one” 
where k(k-1)/2 models are constructed and k is the 
number of categories and, (2) “one against many” 
where each category is split out and all of the other 
categories are merged (DTREG Tutorial, 2003).  The 
second method is more precise and computationally 
expensive. 
 
2.2 The Kernel Functions 

In SVM algorithm, the kernel function is a 

mathematical trick (i.e. k(x, z) =  ) to 

provide solution to problem of classification or 
functional estimation (regression) by adding 
additional dimensions to the data of input space (low-
dimensional) and map them into high-dimensional 
feature space. There are many kernel mapping 
functions that can be used but a few of them have 
been found to perform well in wide variety of 
applications. The process of finding proper Kernel 
function is trial and error task but the recommended 
kernel function is the Radial Basis Function (RBF). 
Here, 4 of the most common Kernel function are 
introduced: 
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 Linear Kernel: K(x, z) =  

 Polynomial Kernel: K(x, z) = ( )d 

 RBF Kernel: K(x, z) = exp( ) 

 Sigmoid Kernel: K(x, z) = 

tanh(ϒ* ) 

The RBF kernel non-linearly maps samples 
into a higher dimensional space, so it can handle 
nonlinear relationships between target and predictor 
attributes; a linear basis function cannot do this. 
Furthermore, the linear kernel is a special case of the 
RBF and also equal to a Polynomial Kernel of degree 
one and corresponds to the original input space. A 
sigmoid kernel behaves the same as a RBF kernel for 
certain parameters. The RBF function has fewer 
parameters to tune than a polynomial kernel, and the 
RBF kernel has less numerical difficulties. (Hawley 
and Madden, 2005) 

 
2.3 Support Vector Regression (SVR) 

In regression formulation, the objective is to 
estimate an unknown continuous valued function 
based on a finite number set of noisy samples (xi, yi), 
i= (1,2,3,…, n), where x is n-dimentional input and 
“y” unlike pattern recognition problems, where the 
desired outputs yi are discrete values like Booleans, is 
real valued output. The SVR basic concept is to map 
nonlinearly the original data into a higher m-
dimensional feature space and then a linear model, 
f(x, w) is constructed in this feature space. The 
solution for regression hyperplane which is linear in 
feature space produces a nonlinear regression 
hypersurface in original input space. The special 
property of this model function is that it has atmost ε 
deviation from the actually obtained targets yi for all 
the training data, and at the same time is as flat as 
possible. In other words, the errors are ignored as 
long as they are less than ε, but will not accept any 
deviation larger than this (Figure 4). Using 
mathematical notation, the general type of error (loss) 
function introduced by Vapnik, the linear loss 

function with -insensitivity zone is (Kecman, 2001): 

= 

 

Vapnik’s -insensitivity loss function 

defines a tube (Figure 4). If the predicted value is 

within the tube, the loss (error or cost) is zero. For all 
other predicted points outside the tube, the loss is 
equal to the magnitude of the difference between the 

predicted value and the radius  of the tube. Note that 

for = 0, Vapnik's loss function is equivalent to a 

least modulus function. (Kecman, 2001) as the same 
way like SVC, there is C constant which is chose by 
user. 
 

 
Figure 4. The soft margin lost setting for linear SVR. 

(Scholkopf and Smola, 2002)  is positive slack 

variable for measurements above and below the 

tube. 

 
3. Applications of SVM Algorithm in Petroleum 
Engineering 

In this section, some examples of SVM 
approach implementations in petroleum engineering 
and a brief description of them are presented. 

 
3.1 SVM and Sandstone Thickness Prediction: 

Youxi and Jun (2007) utilized SVM for 
sandstone thickness prediction from seismic 
waveform in an oilfield fan. A geological model was 
designed for predicting different reservoir parameters 
and the velocity and the thickness of geobody was 
treated as input variables of SVM. After SVM 
training with only five seismic waveform traces, the 
final predicted velocity and theoretical velocities 
were extracted. The maximum error of the predicted 
velocity and thickness of the 101 traces was less than 
4%. 

 
3.2 SVM and Reservoir Prediction: 

Li (2005) used SVM to classify 3D seismic 
volumes to predict oil producing intervals. He used 
six seismic attributes and selected well information as 
training data to build the SVM structure, and 
examined the performance of the machine with 10 
remaining wells in area as test data. The results were 
that the ratio of correct classification as oil 
producing, non-commercial oil, and dry hole 
exceeded 85% for this application in this area and he 
concluded that this supervised learning approach 
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based on a local basis function and the support vector 
principle has excellent generalization ability and can 
be used to avoid overtraining. 

 
3.3 SVM and Facies Prediction 

Wholberg et al., (2006) utilized support 
vector machines for the description of geologic facies 
from limited data by reconstructing a synthetic 
randomly generated porous medium consisting of 
two heterogeneous materials from a few data points 
and by comparing the performance of SVMs with 
that of the geostatistical approach. They pointed out 
the key differences between SVMs and geostatistics 
methods and then concluded that SVM do not need 
ergodicity and other statistical assumptions like 
geostatistics and also for very low sampling densities 
(e.g., 0.25%), which make the inference of statistical 
parameters meaningless, the geostatistical approach 
fails, while SVMs still do a reasonably good job in 
reconstructing the boundaries. 

 
3.4 SVM and Litho-Facies Classification 

Al-Anazi and Gates (2010) implemented 
SVM to classify litho-facies and to model 
permeability in heterogeneous reservoirs. The SVM 
was used to classify new patterns to the 
corresponding electrofacies and it assigned a 
permeability value for each data points in a multi-
dimensional input log space. The proposed 
methodology was integrated with the extended fuzzy 
clustering method to extract clusters from both core 
and log data. Furthermore, a two-stage fuzzy ranking 
algorithms was used to identify and rank the most 
independent and significant permeability log drivers. 
An error analysis and comparison of the performance 
of the SVM with linear discriminant analysis and 
probabilistic neural networks for classification and 
back-propagation neural network and general 
regression neural network for permeability prediction 
revealed that SVM is comparable or superior to other 
methods for identifying lithology and permeability in 
a heterogeneous reservoir. By the comparison of log-
based and core-based clustering they concluded that 
permeability prediction based on core-based 
clustering were slightly better than that of the log-
based clustering. 
 
 Discussions  

Support Vector Machine approach has been 
used in different varieties especially in petroleum 
engineering for classifying and calculating important 
parameters. Results indicate SVM is fast, robust and 
convenient to implement for prediction and solving 
complicated problems compared with conventional 
methods (statistical and experimental) that impose 

more difficulties especially for small sample size 
populations. 

Building a substantial SVM model for 
creating a complete characterization for the 
petroleum reservoirs, including lithology 
identifications, permeability, porosity, water 
saturation and capillary pressure is recommended for 
future works. Prediction of petroleum reservoir 
characterizations can be done on sandstone and 
carbonate reservoir rocks (which are common in 
Iranian oil fields). 
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