An Enhanced Solution of the Universal Lambert’s Problem

A. A. Alshaery

Department of Mathematics, Sciences Faculty for Girls, King Abdul Aziz University, Jeddah, Saudi Arabia

aaalshaery@kau.edu.sa

Abstract: In this paper, an iterative method of arbitrary order of convergence \((p \geq 2)\) is developed for solving the universal Lambert’s problem using homotopy continuation technique. The method does not need any priori knowledge of the initial guess, a property which avoids the critical situation between divergent to very slow convergent solution, that may exist in the application of other numerical methods depending on initial guess. Computational algorithms and numerical applications will be applied for some orbits.

Keywords: Lambert’s Problem; Boundary value problem; orbit determination; Homotopy continuation method.

1. Introduction

The basic problems of space dynamics are initial and boundary value problem. In the present paper we shall consider the second one which is known as Lambert’s problem.

Lambert’s problem was studied in (Escobal 1965, Herrick 1971 and Battin 1964). Also, in 1969 (Lancaster and Blanchard) and (Mansfield 1989) established a unified forms of Lambert’s Problem. In 1990, Gooding developed a procedure for the solution. Recently, an algorithm was developed for Batten’s method of the universal Lambert’s Problem (Alshaary 2008).

The independent variables used in Lambert’s Problem satisfied transcendental equation, which is usually solved by iterative methods, which in turn need: (1) initial guess, (2) an iterative scheme. In fact, these two points are not separated from each other, but there is a full agreement that even accurate iterative schemes are extremely sensitive to the initial guess. Moreover, in many cases the initial guess may lead to drastic situation between divergent and very slow convergent solutions (Sharaf et al. 2007). In the field of the numerical analysis, very powerful techniques have been devoted (Allgwer and Georg 1990) to solve transcendental equations without any priori knowledge of initial guess these techniques are known as homotopy continuation methods, this technique has been used in initial value problem leading to encouraging results (Alshaary 2003). In this paper, an iterative method of arbitrary order of convergence \((p \geq 2)\) is developed for solving the universal Lambert’s problem using homotopy continuation technique. The method does not need any priori knowledge of the initial guess, a property which avoids the critical situation between divergent to very slow convergent solutions that may exist in the application of other numerical methods depending on initial guess. Computational algorithms and numerical applications will be applied for some orbits.

2. Mathematical Modelling

2.1 Basic equation of Lambert’s problem

In Lambert’s problem, two positions vectors \(r_1 = (x_1, y_1, z_1)\); \(r_2 = (x_2, y_2, z_2)\) and the time interval between them \(\Delta t\) which assumed positive are given and its required to find the orbit passing through the two points. Then the quantities of Lambert’s problem are; the lengths of the position vectors \(|r_1|, |r_2|\) and the chord \(c\) between the two points, where

\[r_1 = |r_1| = (x_1^2 + y_1^2 + z_1^2)^{1/2}, \]
\[r_2 = |r_2| = (x_2^2 + y_2^2 + z_2^2)^{1/2}, \]
\[c = |r_2 - r_1| = \{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2\}^{1/2} \]

and the related quantities:

\[\lambda_1^i = r_1 + r_2 + c; \quad \lambda_2^i = r_1 + r_2 - c. \]

The basic equation of the universal Lambert’s theorem could be written as (Vallado and Mcclain 2007).

\[L(z) = C_1 Q_1(z) + C_2 Q_2(z) - \frac{2}{3} C_3 z^{-1/2} - \Delta t = 0, \quad (1) \]

where \(z = \frac{1}{a} \) \([a\ is\ the\ semi-major\ axis\ of\ the\ orbit\ connecting\ the\ two\ points] \) and Q’s are given in terms of the hypergeometric function as:

\[Q_i(z) = F\left(\frac{1}{2}, \frac{3}{2}; \frac{5}{2}; \frac{z \lambda_i^i}{4}\right); \quad i = 1,2, \]
\[C_1 = \pm \frac{\lambda_1^i}{6 \mu}; \quad C_2 = \pm \frac{\lambda_2^i}{6 \mu}; \quad K = \sqrt{\mu}, \quad (3) \]

where \(\mu \) is the gravitational parameter and the upper or lower sign is chosen depending on whether the orbital segment does not (case 1) or does (case 2) respectively include the attracting focus, while

\[C_3 = \begin{cases} 0 & \text{for case1} \\ -\frac{2 \pi}{K} & \text{for case2} \end{cases} \quad (4) \]
2.2 One-point iteration formulae

Let \(Y(x) = 0 \) such that \(Y: \mathbb{R} \to \mathbb{R} \) smooth map and has a solution \(x = \xi \) (say). To construct iterative schemes for solving this equation, will state some basic definition:

1. The error in the \(k \)th iterate is defined as \(\epsilon_k = x - x_k \).
2. If the sequence \(\{x_k\} \) converges to \(x = \xi \), then \(\lim_{k \to \infty} x_k = \xi \).
3. If there exists a real number \(p \geq 1 \) such that \(\lim_{k \to \infty} \|x_{k+1} - x_k\|^p = \lim_{k \to \infty} \|x_{k+1} - \xi\|^p = L \neq 0 \).

The iterative scheme is of order \(p \) at \(\xi \). The constant \(L \) is called a asymptotic error constant. For \(p = 1 \), the convergence is linear; for \(p = 2 \), the convergence is quadratic; \(p = 3, 4, 5 \) the convergence is cubic, quadratic and quintic, respectively.

4. We shall consider only stationary one-point iteration formulae which has the form

\[
x_{i+1} = R(x_i), \quad i = 0, 1, \ldots \tag{7}
\]

5. The order of one point iteration formulæ could be determined either from: (a) The Taylor series of the iteration function \(R(x_n) \) about \(\xi \) (Ralston and Rabinowitz 1978) or from, (b) The Taylor series of the function \(Y(x_{k+1}) \) about \(x_k \) (Danby and Burkard 1983).

By the last approach (b), it is easy to form a class of iterative formulæ containing members of all integral orders (Sharaf and Sharaf 1998) to solve \(Y(x) = 0 \)

\[
x_{i+1} = x_i + \sigma_{i,m}; \quad i = 0, 1, 2, \ldots, m = 0, 1, 2, \ldots \tag{8}
\]

where

\[
\delta_{i,m+2} = \frac{-Y_i}{\sum_{j=1}^{m+1} \delta_{i,m+1}^{(j-1)}}; \quad \delta_{i,1} = 1; \quad \forall i \geq 0, \tag{9}
\]

\[
Y_i^{(j)} = \frac{d^j Y(x)}{dx^j}\bigg|_{x=x_i}; \quad Y_i \equiv Y_i^{(0)}. \tag{10}
\]

The convergence order is \(m + 2 \), and given as

\[
\epsilon_{i+1} = -\frac{1}{m+2} \frac{Y_i^{(m+2)}}{Y_i^{(1)}} \epsilon_{i,m+2}; \tag{11}
\]

where \(\xi \) between \(x_{i+1} \) and \(x_i \) and \(\xi_{i} \) between \(x_{i+1} \) and \(x_{i} \).

2.3 Homotopy continuation method for solving \(Y(x) = 0 \)

Suppose one wishes to obtain a solution of a single non-linear equation in one variable \(x \) (say)

\[
Y(x) = 0, \tag{12}
\]

where \(Y: \mathbb{R} \to \mathbb{R} \) is a mapping which, for our application assumed to be smooth, that is, a map has as many continuous derivatives as requires. Let us consider the situation in which no priori knowledge concerning the zero point of \(Y \) is available. Since we assume that such a priori knowledge is not available, then any of the iterative methods will often fail to calculate the zero \(\bar{x} \), because poor starting value is likely to be chosen. As a possible remedy, one defines a homotopy or deformation \(H: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) such that

\[
H(x, \lambda) = \lambda Q(x) + (1 - \lambda) Y(x), \tag{13}
\]

and attempt to trace an implicitly defined curve \(\Phi(z) \in H^{-1}(0) \) from a starting point \((x_1, 1) \) to a solution point \((\bar{x}, 0) \). If this succeeds, then a zero point \(\bar{x} \) of \(Y \) is obtained. The curve \(\Phi(z) \in H^{-1}(0) \) can be traced numerically if it is parameterized with respect to the parameter \(\lambda \), then the classical embedding methods can be applied (Algower and George 1990).

3. Computational Developments

3.1 Recurrence formulæ for the nth. derivative of \(L(z) \)

For the iterative formulæ of Equation (1), we establish for the nth derivative of \(L(z) \) the following recurrence formulæ:

\[
2zL^{(n+1)}(z) = 3C_1 G_1^{(n)}(z) + 3C_2 C_2^{(n)}(z) - (2n + 3)L^{(n)}, \tag{14}
\]

where the \(G \)'s functions satisfy the recurrence formulæ:

\[
G_1^{(n)}(z) = 0.125(2n - 1)\lambda^2 (G_1^{(0)}(z))^2 G_1^{(n-1)}(z); \quad i = 1, 2, \ldots, \tag{15}
\]

where

\[
\Phi(z) \in H^{-1}(0), \tag{16}
\]

3.2 Computational Algorithms

Two algorithms are established in this section:

1. The first one is for tracing the curve \(\Phi(z) \in H^{-1}(0) \) from \(\lambda = 1 \) to \(\lambda = 0 \).
2. The second one is for solving the basic equation of universal Lambert problem (1).

3.2.1 Computational Algorithm 1

- **Purpose**: To solve \(Y(x) = 0 \) by embedding method.
- **Input**: (1) The function \(Q(x) \) with defined root \(x_1 \) such that \(H(x_1, 1) = 0 \). \hspace{1cm} (2) Positive integer \(m \).
- **Output**: Solution \(x \) of \(Y(x) = 0 \).
- **Computational Sequence**:
 1. Set \(x = x_1, \lambda = (m - 1)/m, \Delta \lambda = 1/m \).
 2. For \(i = 1 \) to \(m \) do
 Begin
 Solve \(H(y, \lambda) = \lambda Q(y) + (1 - \lambda) Y(y) = 0, \)

3.2.2 Computational Algorithm 2

- **Purpose**: To solve the basic equation of Lambert’s theorem by iterative schemes of quadratic up to l th convergence orders without priori knowledge of the initial guess using homotopy continuation method with Q(z) = z + 1.

- **Input**: \(r_1, r_2, c, \Delta t, l, m \) (positive integer), Tol (specified tolerance), \(\mu \).

- **Output**: The solution \(z \) of the basic equation of the universal Lambert’s theorem.

Computational steps:

1. Set \(z = -1; \Delta l = \frac{1}{m} \lambda = 1 - \Delta l; \lambda_1 = \sqrt{r_1 + r_2 + c}; \lambda_2 = \sqrt{r_1 + r_2 - c}; C_1 = \pm \frac{1}{6K}; C_2 = \mp \frac{1}{6K}; K = \sqrt{\mu}; \)

\[C_3 = \begin{cases} 0 & \text{for case 1} \\ \frac{3n}{K} & \text{for case 2} \end{cases} \]

2. For \(i = 1 \) to \(m \)

Begin \{i\}

\[q = 1 - \lambda; A_1 = F \left(\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{z}{4}, \lambda^2 \right); \]

\[A_2 = F \left(\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{z}{4}, \frac{\lambda^2}{2} \right); \]

\[u = \frac{z}{2}; FV = C_1 \ast A_1 + C_2 \ast A_2 - \frac{z}{3} \ast z \ast C_3 \ast u - \Delta t \]

\[L = \lambda \ast (z + 1) + q \ast FV; \]

\[S_1 = \left(1 - \frac{z}{4} \ast \lambda^2 \right)^2; S_2 = \left(1 - \frac{z}{4} \ast \lambda^2 \right)^{-\frac{1}{2}} \]

\[Q_1 = \frac{3}{2z} (S_1 - A_1); Q_2 = \frac{3}{2z} (S_2 - A_2); \]

\[F[1] = C_1 Q_1 + C_2 Q_2 + C_3 Q_3. \]

\[Fa[1] = \lambda + q F[1]. \]

\[\Delta z = -\frac{l}{F[1]}; \]

If \(l = 2 \) go to step 5

\[G_1 = \frac{0.125}{2} \frac{\lambda^2}{2} S_1^2; G_2 = \frac{0.125}{2} \frac{\lambda^2}{2} S_2^2 \]

\[F[2] = \frac{3}{2z} [3C_1 G_1 + 3C_2 G_2 - 5 F[1]]; \]

\[Fa[2] = q F[2]; \]

\[H = Fa[1] + \Delta z \frac{Fa[2]}{2}; \Delta z = -\frac{t}{H}; \]

If \(l = 3 \) go to step 3

For \(k = 1, 4 \)

Do: \(H = Fa[1]; B = 1; n = k - 1 \)

\[G_1 = 0.125 (2n - 3) \frac{\lambda^2}{2} S_1^2 G_1; \]

\[G_2 = 0.125 (2n - 3) \frac{\lambda^2}{2} S_2^2 G_2. \]

\[F[n] = \frac{1}{2z} [3C_1 G_1 + 3C_2 G_2 - (2n + 1) F[n - 1]]; \]

\[Fa[n] = q F[n]; \]

3. \(z = z + \Delta z; \lambda = \lambda - \Delta \lambda \)

If \(\Delta z \leq Tol \) go to step 4; go to step 2.

4. End

Finally, the accuracy of the computations could be checked by the following condition

\[\epsilon = L - [\lambda (z + 1) + q FV]. \]

3.3 Numerical Applications

We used nine orbits with the initial and final position vectors and \(\Delta t \) listed in Table I, components of the position vectors are expressed in geocentric canonical unit \(ER = 6378.1363 \text{ km} \) and time is expressed in unit of time TU (TU = 13.446849 solar minute).

Computational algorithm 2 is then applied for each orbit with \(\mu = 1 \), Tol = \(10^{-8} \) and the computational check is satisfied within this tolerance, the solutions of the basic equation of the universal Lambert’s problem and the check \(\epsilon \) are listed for each case in Table II.

| Table I. Initial and final position vectors of the test orbits |
|---|---|---|
| **Orbits** | \(x_1 \) | \(y_1 \) | \(z_1 \) |
| \(O_1 \) | 0.702533 | 0.380583 | -0.299824 |
| \(O_2 \) | 4.54359 | -4.52683 | -5.66845 |
| \(O_3 \) | -0.483842 | 7.37763 | 1.49529 |
| \(O_4 \) | 0.303061 | -0.168102 | 0.666923 |
| \(O_5 \) | -0.0173445 | -0.333483 | -3.42012 |
| \(O_6 \) | -4.70915 | 3.25104 | 3.52456 |
| \(O_7 \) | 1.72008 | 0.225063 | 0.674954 |
| \(O_8 \) | -0.323474 | -1.47143 | -3.81656 |
| \(O_9 \) | 1.9652 | 0.72978 | 1.96275 |

| Table II. Initial and final position vectors of the test orbits |
|---|---|---|---|
| **Orbits** | \(x_2 \) | \(y_2 \) | \(z_2 \) | \(\Delta t \) |
| \(O_1 \) | 0.702533 | 0.380583 | -0.299824 | 1.22361 |
| \(O_2 \) | 4.54359 | -4.52683 | -5.66845 | 2.90691 |
| \(O_3 \) | -0.483842 | 7.37763 | 1.49529 | 10.0 |
| \(O_4 \) | 0.303061 | -0.168102 | 0.666923 | 1.5 |
| \(O_5 \) | -0.0173445 | -0.333483 | -3.42012 | 2.28939 |
| \(O_6 \) | -4.70915 | 3.25104 | 3.52456 | 8.0 |
| \(O_7 \) | 1.72008 | 0.225063 | 0.674954 | 2.231 |
| \(O_8 \) | -0.323474 | -1.47143 | -3.81656 | 1.20888 |
| \(O_9 \) | 1.9652 | 0.72978 | 1.96275 | 2.231 |
Table II. The solution s of the universal Lambert’s problem for each test orbits

<table>
<thead>
<tr>
<th>Orbit</th>
<th>s</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit 1 elliptic</td>
<td>1.24687</td>
<td>$- 2.22045 \times 10^{-16}$</td>
</tr>
<tr>
<td>Orbit 2 hyperbolic</td>
<td>-0.66667</td>
<td>0.</td>
</tr>
<tr>
<td>Orbit 3 parabolic</td>
<td>0.</td>
<td>8.88178×10^{-16}</td>
</tr>
<tr>
<td>Orbit 4 elliptic</td>
<td>1.15666</td>
<td>1.33227×10^{-15}</td>
</tr>
<tr>
<td>Orbit 5 hyperbolic</td>
<td>-1.24987</td>
<td>0.</td>
</tr>
<tr>
<td>Orbit 6 parabolic</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>Orbit 7 elliptic</td>
<td>1.02598</td>
<td>4.44089×10^{-16}</td>
</tr>
<tr>
<td>Orbit 8 hyperbolic</td>
<td>-0.999998</td>
<td>$- 1.11022 \times 10^{-16}$</td>
</tr>
<tr>
<td>Orbit 9 parabolic</td>
<td>0.</td>
<td>0.</td>
</tr>
</tbody>
</table>

Conclusion

In concluding the present paper, an iterative method of arbitrary positive integer order of convergence ≥ 2 is developed for solving the basic equation of universal Lambert’s problem. The method is characterized by: (1) it is of dynamic nature in the sense that, on going from one iterative scheme to the subsequence one, only additional instruction is needed, (2) it does not need any priori knowledge of the initial guess, a property which avoids it from falling in the critical situations between divergent to very slow convergent solution, that may exist in other numerical methods depending on initial guess as we mentioned before.

The algorithm based on powerful technique for solving transcendental equation without any priori knowledge of the initial guess, this technique is known as homotopy continuation method.

Corresponding Author:
Dr. A. A. Alshaery
Department of Mathematics,
Sciences Faculty for Girls,
King Abdul Aziz University,
Jeddah, Saudi Arabia.
E-mail: naalshaary@kau.edu.sa

References