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1. Introduction 

The history of fractional calculus started 
almost at the same time when classical calculus was 
established [1]. In recent years, fractional systems 
(including fractional derivative or integral) have been 
the concern of  many researchers due to the wide 
range of their applications[2]. The modelling of 
physical phenomena such as heat conduction [3], 
dielectric polarization[4], electromagnetic waves[5] 
and diffusion waves[6] are  examples of fractional 
systems. Furthermore, fractional order controllers 
such as the fractional PID controller [7-8] have 
already been implemented to improve the 
performance of closed loop control systems. 

On the other hand, singular systems which 
are a combination of algebraic and dynamic 
equations- could be found in many applications, such 
as robotic, electrical networks and biomedical 
engineering systems[9]. These types of systems have 
complexities and special theorems that complicate 
their problems in comparison with nonsingular 
systems. In the field of fractional order singular 
systems, very few studies exist. So, there are many 
challenging and unsolved problems.  

Due to the wide range application of state 
variable estimation for stochastic systems, the design 
of the Kalman filter for fractional order singular 
systems will be important. The Kalman filter problem 
for discrete fractional order systems has been solved 
in [10]. Also, the Kalman filter design for singular 
systems has been studied in [11-17].  

In this paper, a Kalman filter for fractional 
order singular systems with an index of 1 and 2 is 
designed. The paper is organized as follows. At first, 
singular systems are introduced. Then, fractional 

order singular systems are presented in section 3. The 
Kalman filter for fractional order singular systems is 
considered in section 4. Section 5 includes two 
examples to verify the effectiveness of the proposed 
method. The paper is concluded in section 6.  
 
2. Introduction of Singular System  

Consider a singular system described by 

1 2 1

2

( ) ( ) ( ) ( )

( ) ( ) ( )

Ex t Jx t K u t K v t

y t Lx t v t

  

 


                                  (1) 

 

Where 1( ) nx t R  , 1( ) mu t R  , 1
1( ) pv t R   

and 1
2( ) pv t R   are state vector, input vector, system 

noise and measurement noise, respectively. E is a 
square singular matrix with n n _dimension and the 
other matrices have appropriate dimensions. System 
noise and measurement noise are both white and 
uncorrelated with zero mean and the covariance 
matrices Q  and R . 

In the literature, singular systems are also 
called differential-algebraic systems [18], generalized 
state space systems [19], descriptor systems [20] and 
semi- state systems [21].   

One of the main properties of singular 
systems is derivative of the input vector effect in the 
system state variable. Another property is that the 
initial condition of singular systems can not be an 
arbitrary value. In other words, for initial 
condition 0x , there may not exist a solution or a 

solution may not be unique. A different property of 
singular systems in comparison with non-singular 
systems is that the transfer function of the system 
may not be strictly proper. 
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Theorem 1[22]- Singular system (1) is 
regular if and only if there exists a scalar   such that 

  1
E J 
  exists.■ 

In solving a singular problem, assuming 
regularity of the system is necessary to ensure 
existence and uniqueness of the solution.  

Definition 1[22]- the index of Ê  is the least 
non-negative k which satisfies (2): 

   1垐Rank Rankk kE E                                            (2) 

The index of singular system (1) is equal to the index 

of the Ê  matrix , which is defined by (3). 

   1
Ê E J E 
                                                       (3) 

 
3. Introduction of fractional order singular system 

A fractional order singular system is 
described by the following equations: 

1 2 1( ) ( ) ( ) ( )E D x t Jx t K u t K v t     

  2( ) ( ) ( )y t Lx t v t                                                    (4) 

Where D  is the Riemann-Liouville fractional 
derivative defined by the following equation, for 
0 1  . 

0

1 ( )
( )

(1 ) ( )

t
d f

D x t d
dt t







 

 
  
    

                           (5) 

also 1
1( ) pv t R  and 1

2( ) pv t R   are system noise 

and measurement noise which are both white and 
uncorrelated with zero mean and the covariance 
matrices Q  and R , respectively. 

Theorem 2[23]- Fractional order singular 
system (4) is regular if and only if there exist a scalar 

  such that  
1

E J


  exists.■ 

Definition 2- The index of fractional order 
singular system is defined similar to the index of the 

singular system and equal to the index of Ê  which is 
defined as the following: 

1ˆ ( )E E J E    

Theorem 3- Consider the fractional singular 
system (4). If (4) is regular, then its solution can be 
described as: 

1 1 1 2 1( ) ( ) ( ) ( )D s t As t B u t B v t                                  (6) 
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Where P and Q are non-singular matrices 
such that the transformation 

 

 1 1
1 2

1

( )
( ) ( )

( )

u t
PEQQ D x t PJQQ x t P K K

v t
   

   
 

   (9) 

gives the system 

1 21 1

1 2 1

( )0 0
( ) ( )

( )0 0

B B u tI A
Q D x t Q x t

D D v tN I
        

        
       

 (10) 

where N is a nilpotent matrix. 
Proof: 

Consider (4). If the system is regular, 
according to the singular theorem, there exist 
transformation matrices P and Q such that the 
decomposed fractional singular system is (10). By 
defining a new state variable, 

1 1

2

( )
( )

( )

s t
Q x t

s t
 

 
 

                                                    (11) 

 
system (10) can be written as  
 

1 1

22

( ) ( )0 0

( )0 0( )

D s t s tI A

s tN ID s t





      
       
       

 

1 2

1 2 1

( )

( )

B B u t

D D v t

   
    
   

                      (12) 

1
2

2

( )
( ) ( )

( )

s t
y t LQ v t

s t

 
  

 
                                          (13) 

 
Now, if 0N  , it can be stated that 

2 1 2 1( ) ( )s D u t D v t                                                (14) 

and the proof is made. 
If 0N  we can multiply the second row of 

(12) with N  to get 
2

2 2 1 2 1( ) ( ) ( ) ( )N D s t Ns t ND u t ND v t                   (15) 

We now fractional differentiate (15) and 
insert the second row of (12). This gives 

2 1 2 1

2
1 2 1 2

( ) ( ) ( )

( ) ( ) ( )

s t D u t D v t

ND D u t ND D v t N D D s t   

  

  
 

If 2 0N   the proof is made, otherwise we 

just continue until 0mN  . We would then arrive at 
an expression like 
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2 1 2 1
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And the proof is complete.■ 
4. Kalman filter for fractional order singular 
system 

In [15], to design the Kalman filter for a 
singular system, the covariance matrix is initially 

considered as ( ) ( ) ( )TP t E x t x t    
. Then by 

differentiation from both the sides of the equation 
and the use of system equation, a riccati equation is 
obtained for the system. 

This approach has a basic problem for a 
fractional singular system. The reason is that in 
fractional calculus, the derivative of the product of 
two functions is as follows: 

 
0

( ) ( ) ( ( )) ( ( ))T k k

k

D x t x t D x t D x t
k

 






 
  

 
           (16) 

In other words, if we want to constitute a 
covariance matrix and derivate it, we will be faced 
with a series of infinite terms. Also, only a fractional 
derivative with  order of state variable is obtained 
from the system equation. While in this series, we 
also need another fractional derivative of the state 
variable.  

In this section, the Kalman filter for 
fractional order singular systems is designed. First, 
the fractional singular system is decomposed into two 
static and dynamic subsystems. Then, the Kalman 
filter is designed for each subsystem. In order to 
solve this problem, two cases of index 1 and 2 are 
considered for the fractional order singular system. 

Theorem 4- The Kalman filter for the 
fractional singular system (4) with an index of 1 is 
given by the following set of equations: 

1
1 1J U R                        (17) 

     
1 1 1

1

2 1 1

1

垐( 1 ) ( ) ( ) ( ) ( )

ˆ( ) ( 1) ( 1 1 )

k
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J C D u k s k j k j
j






     

 
       

 

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2
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      

   
        

   


                                                                                      

(19)     
1

1 1 1 1 1 1( 1) ( )T T
kK P k k C C P k k C R


               

      (20)   

1 1 1 1 2 1垐 ?( ) ( 1) ( ( ) ( 1) ( ))ks k k s k k K y k C s k k C D u k       

                       (21)                                                                                          
 1 1 1( ) ( 1)kP k k I K C P k k       

                               (22)  2 1ˆ ( ) ( )s k k D u k                    

                                    (23)      

  2 2 2 2 2 2 2垐( ) ( ) ( ) ( ) ( )
T TP k k E s k s k s k s k D Q D     

  
  

                    (24)                                                                                       

1 1

2 2

垐( ) ( )
垐( ) ( )

垐( ) ( )

x k k s k k
x k k Qs k k Q

x k k s k k

   
     

      
            (25)   

( 1)

! ( 1)j j j

 



   
 
   

                                      (26) 

 
Where   is the Gamma function which is a 

generalization of the factorial concept for non-integer 

numbers and ˆ ( )is k k is the estimation of ( )is k  and is 

defined as: 

ˆ ( ) ( ) (1),..., ( )i is k k E s k y y k                                    (27) 

 
Also, 1( )P k k  and 2( )P k k are the estimation 

error covariance matrices of the state of first and 
second subsystems, respectively. 
Proof: 

By assuming 1 for the index of the system, 
the solution of the system is obtained as follows: 
 

1 1 1 2 1( ) ( ) ( ) ( )D s t As t B u t B v t                                (28) 

2 1 2 1

1 1

2

( ) ( ) ( )

( )
( )

( )

s t D u t D v t

s t
Q x t

s t


  

 
 

 

                                          (29) 

1
2

2

( )
( ) ( )

( )

s t
y t LQ v t

s t

 
  

 
                                          (30) 

By considering 

 1 2LQ C C  

And from (28),  

1 1 2 2 2

1 1 2 1 2 2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

y t C s t C s t v t

C s t C D u t C D v t v t

  

   
             (31) 

As can be observed, a continuous Kalman 
filter for the first subsystem should be designed. 
However, in a continuous fractional system, unlike an 
integer system, a dynamic equation for the estimation 
error covariance matrix cannot be found as a result of 
the generalized Leibniz rule (14). Therefore, in the 
procedure of designing a Kalman filter for a 
fractional system similar to an integer one, a problem 
is encountered in the step of covariance matrix. Thus, 
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for the estimation of 1s , the first subsystem and 

output equation are sampled(sampling time is 1). 
 
 

1 1 1 1( 1) ( ) ( ) ( )s k As k B u k v k                              (32) 

1

1 1 1

1

( 1) ( 1) ( 1) ( 1 )

k
j

j

s k s k s k j
j

 




 
        

 
      (33) 

 

1 1 2 1 2( ) ( ) ( ) ( )y k C s k C D u t v k                                (34) 

 
For simplicity, by defining  

1 2 1

2 2 2 1 2

( ) ( )

( ) ( ) ( )

v k B v k

v k C D v k v k

 

   
                                     (35) 

their covariance matrices are obtained as follows: 

1 1 2 2 1

2 2 2 2 2 2 1

1 2 2 2 2 1

( ) ( )

( ) ( )

( ) ( )

T T
kj kj

T T T
kj kj

T T T
kj kj

E v k v j B Q B Q

E v k v j C D Q D C R

E v k v j B Q D C U

 

 

 

      

      

       

            (36) 

In [10], the fractional Kalman filter has been 
designed for uncorrelated system noise and 
measurement noise. However, as can be seen from 
(36), these noises are correlated. Therefore, it is 
necessary to change the Kalman filter equations 
presented in [10].  

The approach to solving this problem is to 
reformulate the fractional dynamic equation and 
cause the noise doses not to correlate with each other. 
Subsequently, the fractional Kalman filter presented 
in [10] is used to design a Kalman filter for the first 
subsystem. This method is derived in detail as shown 
below. 

An item which consists of output equation 
and equals zero is added to the right hand of (34). 
The equation is 

 

1 1 1 1

1

1

1

1 1 2 1 2

( 1) ( ) ( ) ( )

( 1) ( 1 )

( ) ( ) ( ) ( )

k
j

j

s k As k B u k v k

s k j
j

J y k C s k C D u t v k






   

 
    

 

    

   

 

 

1 1 1

1

1

1

2 1 1 2

( ) ( )

( 1) ( 1 )

( ) ( ) ( ) ( )

k
j

j

A J C s k B u k

s k j
j

J y k C D u t v k J v k






  

 
    

 

      

       (37) 

Where  J   is a coefficient matrix to be 

determined. New system noise *
1 ( )v k  is defined as 

*
1 1 2( ) ( ) ( )v k v k J v k                                                 (38) 

The expectation of *
1 ( )v k  is calculated by 

   *
1 1 2( ) ( ) ( ) 0E v k E v k J E v k        

                        (39) 

The covariance between system noise *
1 ( )v k  

in (38) and measurement noise 2( )v k  is calculated by 

 1 2 2 1 1( ) ( ) ( )T kj kjE v k J v k v j U J R          
          (40) 

The coefficient matrix J   is determined by 

1 1 0U J R  . By rearranging the equation, we obtain 

1
1 1J U R                                                                (41) 

That is to say, the Kalman filter presented in 
[10] can be used to design a Kalman filter for the first 
subsystem. By some manipulations, (18) - (22) will 
be obtained. It is noted that equation (19) is the main 
difference between the Kalman filter for the 
fractional system with an integer order Kalman filter. 
The calculation of the covariance error matrix 

( 1 ( 1 )P k k ) depends on the values of the covariance 

matrices in previous time samples (i.e. 

1 1( 1 1), ( 2 2),...P k k P k k    ), in addition to 

1( 1 1)P k k  . The other difference between the 

proposed Kalman filter and the conventional Kalman 
filter is the insertion of 2 1 ( )C D u k to the state 

estimation equation. 
Now, 2s  is estimated. As shown in (29), 2s  

is an algebraic equation including the deterministic 
input and system noise. So, the best estimation is the 
mean of the algebraic equation. 

2 1ˆ ( ) ( )s k k D u k                                                      (42) 

The estimation error covariance matrix can 
be calculated by (24). The initial condition of (24) is: 
 

0

1 1
2 0 00 0

TT TP I Q E x x Q I            
                  (43) 

02 2 2
TP D Q D                                                        (44) 

By looking at (43)-(44), the covariance 
matrix 2P  may have a discontinuity at zero time. This 

is another important difference between singular and 
non singular systems. 
 

Also, with regard to (28)-(29), one can see 
that the system noise is inserted to 1s  and 2s , 

simultaneously. So it is necessary to calculate 12( )P k . 

However, if 2B  or 2D  are zero matrices, then they 

will not need to be calculated. By some manipulation, 
we have: 
 

  12 1 1 2 2

1 2 2 2

垐( ) ( ) ( ) ( ) ( )

( ) ( )

T

T
k

P k E s k s k s k s k

E e k e k K C D Q

   
  

      

              (45) 
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Now, we present an important lemma which 
is used for the design of the Kalman filter for 
fractional singular systems with an index of 2. 

Lemma 1- Assume that 1v and 2v  are two 

uncorrelated zero mean white noises. Their 
covariance matrices are Q  and R , respectively. Then 

3v  described by (46) is a color noise. 

3 1 1 2( ) ( ) ( ) ( )v k Av k B v k v k                                (46)  

Proof: 
The covariance of 3( )v k  is calculated by 

 

3 3

1 1 2 1

1 1 1 2

1 1 1 2

1 1 2 1

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T

T T T T

T T T

T T T

T T T T

E v k v j

A E v k v j A E v k v j A

A E v k v j B AE v k v j

B E v k v j A BE v k v j

B E v k v j B E v k v j B



 

  

 
  

          

           

            

             

2 2( ) ( )TE v k v j    

 

The above equation is simplified as 

3 3

1 1 1 1

1 1 1 1

2 2

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

T

T T T T

T T T T

T

E v k v j

A E v k v j A A E v k v j B

B E v k v j A B E v k v j B

E v k v j



  

 
  

           

             

    

 

,

0

,

0

,

0 0

( 1)

( 1)

j
T l T

kj k j l

l

k
l T

k j l

l

jk
T

k l j m

l m

AQ A A Q B
l

B Q A
l

B Q B R
l m


 




 










 

 

 
     

 

 
   

 

  
   

  







 

It is clear from the above equation that the 

covariance matrix is nonzero for k j . Therefore, 3v  

is a color noise.■ 
In the next theorem, we design the Kalman 

filter for the fractional singular system with an index 
of 2. 

Theorem 5- The Kalman filter for fractional 
singular system (4) with an index of 2 is given by the 
following set of equations: 

1
2 2J U R                                                          (47) 

1 1

2 1 2 1

1

1

1

垐( 1 ) ( ) ( ) ( )

( ) ( )

ˆ ( 1 1 )

k

k

j

j

k k A J C k k Bu J y k

J C D u k J C D u k

k j k j



 






     

   

     

            (48) 

   1 1 1 1 2

1

1

2

( 1 ) ( )

( 1 1 )

T

k

j j

j

P k k A J C P k k A J C Q

P k j k j





         

      
  

(49) 

 
1

1 1 2( 1) ( 1)T T
kK P k k C C P k k C R


                (50) 

1 1

1 1 2 1 2 1

垐( ) ( 1)

ˆ( ( ) ( 1) ( ) ( ))k

k k k k

K y k C k k C D u k C ND u k

 



 

     
 

                              (51) 

 1 1( ) ( 1)kP k k I K C P k k                                    (52) 

1
1

ˆ ( )
ˆ ( )

ˆ( )

s k k
k k

k k




 
  
 

                                     (53) 

2 1 1ˆ ( ) ( ) ( )s k k D u k ND u k                                   (54) 

2 2 2 2 2 2 2

2 2

0

( ) T T T T

k
T T

j

P k k D Q D D Q D N ND Q D

ND Q D N
j j

 



    

 
         
    

 


            (55) 

1 1

2 2

垐( ) ( )
垐( ) ( )

垐( ) ( )

x k k s k k
x k k Qs k k Q

x k k s k k

   
     

      
             (56) 

 

Where ˆ ( ), 1,2is k k i  , 1( )P k k  and 

2( )P k k are defined as theorem 4. 

Proof: 
If the index of the system is 2, then its 

solution is obtained as follows (sampling time is 1): 

1 1 1 1

1

1 1 1

1

( 1) ( ) ( ) ( )

( 1) ( 1) ( 1) ( 1 )

k
j

j

s k As k B u k v k

s k s k s k j
j



 




    

 
        

 


     (57) 

2 1 2 1 1

2 1

( ) ( ) ( ) ( )

( )

s k D u k D v k ND u k

ND v k





    

 
                   (58) 

1 1 2 1 2 2 2( ) ( ) ( ) ( ) ( )y k C s k C D u k C ND u k v k         (59) 

 
Where 

1 2 1

2 2 2 1 2 2 1 2

( ) ( )

( ) ( ) ( ) ( )

v k B v k

v k C D v k C ND v k v k

 

     
           (60) 

 
By lemma 1, it can be seen that 2( )v k  is a 

color noise. In order to design the Kalman filter, we 
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find a dynamic system which its input is white noise 
and its output is color noise with a mean and 
covariance matrix similar to 2( )v k  by means of 

identification methods. 

2

( 1) ( ) ( )

( ) ( ) ( )

k k w k

v k k w k

  

 

  

  
                                         (61) 

 
Now, the above system and the first 

subsystem are augmented. Then the Kalman filter is 
designed for the new system and (48)-(52) are 
obtained. Similar to theorem 4, the second subsystem 
is a static system, so the best estimation of the second 
state is the mean of the algebraic equation and (54)-
(55) is derived.■ 
 
5. Numerical Examples 
A. Consider the fractional order singular system with 
an index of 1, described by 

0.5
1 1

0.5
22

1

( ) ( )0 1 0 1

( )0 0 1 1( )

0.7071 0.7071
( ) ( )

1 0

D x t x t

x tD x t

u t v t

       
      
       

   
    
   

      (62) 

  1
2

2
( ) 0 1.4142 ( )

x
y t v t

x

 
  

 
                                  (63) 

Where 1( )v t and 2 ( )v t  are white noise with 

zero mean value and the covariance matrices as: 

1 1 2 20.1 , 0.1T TE v v E v v          
                     (64) 

The above system is regular for 0  . Ê  is 
obtained as: 

  1 1 0 1ˆ
0 1

E E J E J E
   

      
 

                         (65) 

We have 

   2垐 1 , 1rank E rank E   

So, the index of this system is one. 
According to the singular theorem, there exist 
matrices P  and Q   

1.4142 0 0.7071 1
,

0 1 0.7071 0
P Q
   
       

                 (66) 

Such that the system is decomposed as follows: 
0.5

1 1 1

2

1 2

( ) ( ) 0.1 ( )

( ) ( )

( ) ( ) ( )

D s s t u t v t

s t u t

y t s t v t

   



 

                                 (67) 

Figure 1 shows the first subsystem state 
variable and its estimation. It is clear that the state 
variable has been estimated very well. 

For the second subsystem state variable, we 
have 

2( ) ( )s t u t                                                               (68) 

In this case, the estimation of the state is 
coincided by the state exactly, because this state 
variable is independent of noise and is equal to the 
deterministic input. 

Figures (2)-(3) show the state variable of 
system (64) and their estimations. It is evident that 
the proposed method has an appropriate efficiency. 
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Figure 1. first subsystem state variable and its estimation 
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Figure 2. first state variable and its estimation 
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Figure 3. second state variable and its estimation 

 

 
B. Consider the fractional order singular system (69). 
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0.5
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0.5
2 2

0.5 33

1

( )1 0 0 0 1 0.5 ( )

0 1 0 ( ) 0 0 0.5 ( )

0 0 0 1 0 0 ( )( )

0 1.2

0.45 ( ) 2.6 ( )

0 1

D x t x t

D x t x t

x tD x t

u t v t

 
      

             
          

 

   
       
      

       (69) 

 
1

2 2

3

( )

( ) 2.27 2.27 0 ( ) ( )

( )

x t

y t x t v t

x t

 
   
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                       (70) 

Where 1( )v t and 2 ( )v t  are white noise with 

zero mean value and the covariance matrices as: 

1 1 2 20.1 , 0.1T TE v v E v v          
 

The above system is regular for 0  . Ê  is 
obtained as: 

 
10.5 1

0 0 0
ˆ 1 1 0

0 2 0

E E A E A E
 

 
       
  

  

We have 

     2 3垐 ?2 , 1 , 1rank E rank E rank E    

So, the index of this system is two. Using non-
singular matrices P  and Q   

2.236 2.236 2.236

0.8944 0 0

0 0 1

0 0 1

0.4472 0 1

0.8944 2.236 2

P

Q

 
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   
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21 21

0.5 2222

1
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0 0 0.8944 ( ) 0 1 0 ( )

0 0 0 0 0 1 ( )( )

1 1

0 ( ) 1 ( )

0 1

D s t s t

D s t s t

s tD s t
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 
      

             
           

 

   
       
      

        

 (71) 
1 2( ) ( ) ( )y t s t v t                                                     (72) 

The first subsystem state variable and its 
estimation are shown in figure (4). For the second 
subsystem, we have 
 

21 0.5
1 1

22

( ) 1 0.8944
( ) ( )

( ) 1 0

s t
v t D v t

s t

      
          

                (73) 

21

22

ˆ 0

ˆ 0

s

s

   
   
  

                                                             (74) 

 
Also, the estimation of the states of system 

(69) are obtained as: 
 

1 22

2 1 22

3 1 21 22

垐( ) ( )

垐 ?( ) 0.4472 ( ) ( )

垐 垐( ) 0.8944 ( ) 2.236 ( ) 2 ( )

x t s t

x t s t s t

x t s t s t s t



 

  

                (75) 

 
The results are shown in figures (5)-(7). 

These figures show that the proposed Kalman filter 
works properly. As can be seen in figure (5), the 
estimation of the first state variable is zero, because 
this state is equal to system noise for which the mean 
is zero. So, its estimation becomes zero. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. first subsystem state variable and its estimation 
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Figure 5. first state variable and its estimation 
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Figure 6. second state variable and its estimation 
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Figure 7. third state variable and its estimation 

 
 

6. conclusion 
In this paper, the design of Kalman filters 

for a  fractional order singular system has been 
proposed. To approach this goal, first the fractional 
order singular system has been decomposed into two 
subsystems and then the Kalman filters are elaborated 
for each subsystem. Also, the main difference 
between the fractional singular system and the 
fractional non-singular system has been expressed in 
this regard. We showed that in the design of the 
kalman filter for a system with index of 2, we have a 
color noise and it is necessary to use an identification 
method to solve the problem. At the end, the validity 
of the proposed method has been demonstrated by the 
simulations.   
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