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1. Introduction 

The development of new structures has been one 
of the most important achievements in device 
engineering to overcome scaling of bulk MOSFETs 
transistors to the nanoscale era [1]. FinFETs and 
nanowire MOSFETs are strongly considered for 
generations of silicon-integrated devices that satisfy 
the requirements of the International Technology 
Roadmap for Semiconductors (ITRS) [2]. Quantum 
mechanical effects (QME) play a crucial role in device 
performance and parameters [3]. Therefore, accurate 
and efficient device simulation tools are necessary to 
interpret experimental results, and to provide device 
and process design guidelines for the fabrication of 
such structures. 

Among the new simulation methods, Non-
equilibrium Green’s function Formalism (NEGF) 
shows a strong potential for modeling nanoscale 
devices where ballistic or inelastic scattering transport 
simulation dominate [4]. Device simulation is carried 
out using the so-called self-consistent solution within 
the NEGF framework [5]. Iterations are carried out 
between Poisson’s and quantum transport’s equations 
until   a solution satisfying both are achieved within    
a certain tolerance. This makes the simulation speed 
very challenging in addition to the complexity of the 
NEGF, therefore, computational efficient methods are 
needed. 

Within NEGF, Real-Space (RS) representation is 
the most accurate approach. Consuming time is the 
main obstacle for its usage in device simulation due to 
the huge size of the Hamiltonian matrix of the device 
region for two or three dimensional calculations. In 
order to accelerate RS calculations, efforts have been 

exerted by using different techniques [5,6] but the 
computational efficiency is still not satisfactory and 
investigations of alternative approaches to the accurate 
RS approach were needed. Recently, mode space 
(MS) approach has been proposed [7,8] in which the 
wave functions are expanded in terms of the device 
eigen functions. As a result, the transport calculation 
can be simplified to a one-dimensional problem along 
the transport direction [9]. The Uncoupled-Mode 
Space (UMS) is the fastest approach ignoring the 
coupling between all the device’s modes and treating 
the transport problem of each mode separately 
[10,11]. Within the MS approach, the Schrödinger 
equation is calculated either on every slice 
perpendicular to the transport direction or on one slice 
only [12] or an analytical approximation is used [13] 
to further reduce the computations but sacrificing the 
simulations accuracy. Unfortunately, the limitation to 
ultra thin devices only (5 nm thick or less) constrained 
the usage of UMS approach [9,10]. The Coupled-
Mode Space (CMS) fully accounts for the coupling 
terms between the modes resulting in more accurate 
simulation [12,14] in which the CMS computational 
burden is in between the RS and the UMS. Ben 
Abdallah et al. [15] proposed the modeling of ballistic 
quantum transport in nanostructures using the 
decomposition of the wave function which reduced 
simulation time. A. Paussa et al. [16] presented the 
possible advantages related to the use of the 
Pseudospectral (PS) method for the efficient 
description of the carrier quantization in nanoscale  n- 
and p-MOS transistors. An efficient carbon nanotube 
(CNT) transistor modeling technique that is based on 
cubic spline approximation of the non-equilibrium 
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mobile charge density has been reported [17]. 
Artificial neural network (ANN) for modeling and 
simulation of carbon nanotube metal–oxide-
semiconductor field-effect transistors (CNT-
MOSFETs) have been applied in [18]. In [19], a three 
dimensional (3D) numerical modeling of nanoscale 
FinFET including quantum-mechanical effects has 
been developed. The exact potential profile in the 
channel has been computed by obtaining a self-
consistent solution of 3D Poisson–Schrödinger 
equation using Leibmann’s iteration method. In [20], a 
quantum transport model using wavelet method based 
on the self-consistent solution of 3-D Poisson-
Schrödinger equation has been reported using multi-
resolution approach. Efficient schemes for the non-
equilibrium Green’s function simulation in the mode 
space formalism of electron-phonon scattering using 
the self-consistent Born approximation in nanoscale 
devices have been developed [21]. The existing 
literatures reported on analytical and numerical 
modeling have shown the complexity in evaluating 
various device characteristics including QME. In 
addition, it has been found that many assumptions and 
approximations have to be incorporated while the 
device is modeled. 

 
In this work, we propose a novel approach for 

solving the NEGF within the MS representation. By 
incorporating partial coupling between the modes, the 
proposed approach takes the advantage of CMS in 
accuracy and UMS in the efficiency. As a case study, 
the N-channel FinFET is taken but the approach can 
be, in principle, applied to other structures such as 
CNT, nanowires and multigate devices. The proposed 
model as well as the CMS approache was 
implemented into the FETMOSS simulator [22]. 
When the new approach is benchmarked with the 
CMS, it shows very good performance as for 
accuracy, memory requirements and CPU time. In this 
paper, we first describe the device structure and 
briefly review the CMS approach theory in section 2. 
In section 3, calculation of the coupling terms on 
sample devices from the ITRS is carried out and the 
proposed PCMS is introduced. In section 4, results on 
the simulation time and accuracy of the PCMS with 
respect to the CMS are presented and discussed. 
Finally, the article is concluded in section 5. 

 

2. Finfet Structure and Coupled-Mode Space 
Aproach 

 Figure 1 (a) shows the FinFET device considered 
in this study. The top gate oxide thickness was 
assumed to be much thicker than the side gate oxide 
such that channels are formed under the side gate 
oxides only. Consequently, the simulation domain was 
assumed to be 2D as shown in Figure 1 (b). The 
following assumptions are valid for FETMOSS 
simulator as in the literature:   
 
1) Channel length (x-direction) is shorter than any 

characteristic scattering length, so the device is 
operating in the ballistic limit [23].  

2) The width (in the z-direction) is large compared 
to its length and thickness [10].   

3) Large drain and source contacts, so the Fermi 
level is determined by the applied voltage [4].  

4) Zero gate current during the self-consistent 
solution due to the isolation of the insulator 
region from electron penetration [10].  

5) N-channel transistor where we can neglect holes 
contribution.  

6) Finally, a single band effective mass 
Hamiltonian is used to model the electron 
transport with parabolic E-K relation [3]. 
 

 
                           (a) 
 
 

 
                                      (b) 
Figure 1.  (a) 3-D view of a FinFET, (b) A-A cross- 
section 
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Figure 2. Flow chart of simulation of Coupled-
Mode space approach in 2D simulation. 

 
 
 
The flow chart shown in Figure 2 illustrate the 

procedure of calculating CMS approach as follows: 
First, initial guess was assumed by running ballistic 
transport model using semi-classical approach in 
FETMOSS simulator [22] for one iteration. Second,  a 
one dimensional (1D) Schrödinger equation with    a 
closed boundary condition was solved at each slice 
(vertical y-direction) of the transistor to obtain the 
electron subbands (along the transistor) and the 
corresponding eigenfunctions. Third, coupled 1D 
transport equation was solved by NEGF approach 
[3,4] for the electron charge density. Fourth, the two 
dimensional (2D) Poisson’s equation for the 
electrostatic potential was solved. Finally, the new 
potential was compared with the old one. If it 
converges, then the electron current by the NEGF 
approach was calculated. Otherwise, second, third and 
fourth steps were continued. 

In MS representation, the envelope wave function 
y(x, y, z) is expanded in terms of the ortho-normal 

basis [y(�, �) exp(���
)] √�⁄  where the quantum 

number ��  corresponds to the transverse 
eignenergy  ���

= ℏ���
� 2��

∗⁄ , ��
∗

 is the electron 

effective mass in the z-direction and  is the channel 
width. From solving the 2D Schrödinger equation: 
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the 2D wave function y(x, y) is obtained, where ��
∗  

and ��
∗

 are the electron effective mass in x- and y- 

direction respectively, �� is the conduction band edge, 
E is the total energy, and �� is the longitudinal energy 

due to motion in x- and y- plane. By choosing suitable 
expansion for 2D wave function y(x,y) [24], a coupled 
1D Schrödinger equation is obtained [25]:  
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where          

 

  

and     

         
(m)(x) are the expansion coefficients, (n)(x, y) are the 
modes associated with confinement in the 
(transverse) y-direction, E(m)(x) represents the bottom 
of the mode m and Nm is maximum number of 
subbands (modes). For each mth mode, the right hand 
side of eq. (2) involves a summation over all other 

modes including the mth mode itself. This summation 
gives rise to coupling between the modes. Only a few 
of the lowest modes (i.e., m, n = 1,...,Nm, Nm <Ny ) are 
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due to quantum confinement. Eq. (3) implies a set of 
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(3)                

and                                                             (4) 

where hmn matrix dimension is (Nx x Nx), Nx is the 
number of grid points in x-direction and mn is the 
Kronecker delta function.  

Finally, the NEGF framework calculates the 
electron density and current after the device 
Hamiltonian is obtained [4,12,26,27]. The CMS fully 
account for the different terms of eq. (2) while the 
UMS completely ignores the right hand side of this 
equation and set to zero. In the next section, we show 
that only partial coupling between the modes is 
needed, for accurate simulation, depending on whether 
the mode shape (or index) is odd or even.  

 

3. Proposed Partial-Coupled Mode Space 
The PCMS approach has the advantage of 

accuracy with reduction of simulation time with 
respect to CMS approach. This reduction depend on 
two criteria: The first one is the criteria of choosing 
the suitable number of modes that contains charge 
density which contributes in the charge and current 
calculations. The second one is the criteria of 
eliminating some coupling terms between modes that 
have no contribution in calculating charge and current. 

The coupling effect of the mth mode on the nth 
mode is defined by the coupling term that was stated 
in eq. (2). 

                                                                           (5) 

 
It depends on both the longitudinal energy and the 

x-position along the transistor channel. Coupling 
terms are used as indicator of whether the coupling 
between the modes is important or can be neglected. 
The simulator FETMOSS [5,11,22] was modified to 
calculate these terms for assessing their importance 
hereinafter.  

For this study, we select five devices to cover the 
ITRS targets from the year 2013 up to the year 

2021[2]. Table 1 lists the parameters of these devices. 
All devices were subjected to PCMS and CMS 
simulation. When we go through showing results 
graphically, we will concentrate on device 3 to avoid 
repeating results. The transistor channel is intrinsic 
and the gate metal work function is 4.65eV. For 
source and drain regions, doping was selected to be 
2x1020cm-3 while length was 5nm.  

 
Table 1Device parameters list used in simulation 

              Device 1 2 3 4 5 

Year of production 2013 2015 2017 2019 2021 

Channel length L (nm)  13 10 8 6 5 
Si thickness TSi (nm) 7.5 6 4.5 3.8 3.2 
SiO2 thickness Tox (nm)  0.6 0.6 0.55 0.5 0.5 
Supply voltage VDD (V)  0.9 0.8 0.7 0.7 0.65 

 
Quantum confinement creates steps in the energy 

from one mode to the higher order one and so few 
modes are only needed. When the energy becomes too 
high, the mode is almost not occupied by electrons 
and has negligible effect on the simulation results. 
Thus, a criteria for determining the suitable number of 
modes is needed. After several iterations, we found 

that taking modes with charge density         10-3
 of 

the lowest order mode’s charge density is sufficient 
for charge and current calculations. An example is 
shown in Figure 3 where device 3 is simulated and the 
2D charge density for different modes is depicted. The 
needed number of modes in this case is 4. By using 
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the same criteria, the numbers of modes are 7, 6, 4 and 
3 for devices 1, 2, 4 and 5 respectively. The use of 
larger number of modes will increase the simulation 
time without adding value to the accuracy. 
 

Figure 3. 2D electron density of different modes 
along the channel in x-direction for device 3 in on-

state  
 

To determine the eliminated coupling terms 
according to the second criteria, we will consider the 
maximum absolute values of the coupling terms 
|Cmn|max. The value of these quantities was studied at 
different bias conditions and only on-state (VGS = VDS 

= VDD) and off-state (VGS = 0V and VDS = VDD) are 
enough for demonstrating our results. The same 
observations of these two cases were found for other 
different bias conditions.   

|Cmn|max is calculated and presented in Table 2 (a) 
and (b) for device 1 in off- and on-states respectively. 
The common observation among all modes is that 
there is (are) always one or two dominant term(s) 
where the other terms are order of magnitude smaller 
and can be neglected. For example, C13|max is the 
dominate term for the 1st order mode, C24|max for the 
2nd order mode, C31|max and C35|max for the 3rd order 
mode and so on…... Table 3 (a) and (b) (Table 4 (a) 
and (b)) list the quantity |Cmn|max for device 2 (device 
3) in off- and on-states respectively, where similar 
results were obtained. In fact the same observation 
was found for all other devices under study. 

Table 2 
(a) |Cmn|max for device 1 in off-state with 

dominant terms highlighted 
m 
n 

1 2 3 4 5 6 7 

1 0.02 0.05 0.51 0.02 0.06 0.01 0.01 

2 0.05 0.04 0.03 0.70 0.01 0.08 0.00 

3 0.5 0.03 0.06 0.02 0.7 0.01 0.09 

4 0.01 0.67 0.02 0.07 0.01 0.65 0.00 

5 0.06 0.01 0.70 0.01 0.07 0.01 0.55 

6 0.00 0.09 0.01 0.65 0.01 0.06 0.01 

7 0.01 0.00 0.09 0.00 0.60 0.01 0.06 

 

 

 

(b) |Cmn|max for device 1 in on-state with 
dominant terms highlighted 

   1 2 3 4 5 6 7 
1 0.01 0.07 0.31 0.02 0.05 0.01 0.01 
2 0.07 0.01 0.02 0.36 0.01 0.01 0.00 
3 0.33 0.02 0.02 0.03 0.33 0.01 0.06 
4 0.02 0.35 0.03 0.02 0.01 0.26 0.00 
5 0.05 0.01 0.34 0.01 0.02 0.01 0.23 
6 0.01 0.07 0.01 0.30 0.01 0.02 0.01 
7 0.02 0.00 0.07 0.00 0.26 0.01 0.01 

 
Table 3 

(a) |Cmn|max for device 2 in off-state with 
dominant terms highlighted 

    m  
n     

1 2 3 4 5 6 

1 0.01 0.03 0.43 0.01 0.04 0.00 

2 0.03 0.02 0.02 0.48 0.01 0.05 

3 0.41 0.01 0.03 0.01 0.44 0.00 

4 0.01 0.50 0.01 0.04 0.01 0.39 

5 0.05 0.01 0.46 0.01 0.03 0.01 

6 0.00 0.05 0.00 0.39 0.01 0.03 

 
(b) |Cmn|max for device 2 in on-state with 

dominant terms highlighted 
    m 
n    

1 2 3 4 5 6 

1 0.01 0.04 0.25 0.01 0.04 0.00 

2 0.04 0.01 0.01 0.26 0.00 0.04 

3 0.27 0.01 0.01 0.01 0.23 0.00 

4 0.01 0.26 0.01 0.01 0.00 0.18 

5 0.04 0.01 0.23 0.01 0.01 0.00 

6 0.01 0.04 0.00 0.20 0.00 0.01 

 
Table 4 

(a) |Cmn|max for device 3 in off-state with 
dominant terms highlighted 

      m  
n    

1 2 3 4 

1 0.01 0.01 0.26 0.00 

2 0.01 0.01 0.01 0.23 

3 0.26 0.01 0.01 0.00 

4 0.00 0.26 0.00 0.01 

 
(b) |Cmn|max for device 3 in on-state with 

dominant terms highlighted 
     m  
n    

1 2 3 4 

1 0.00 0.01 0.16 0.00 

2 0.08 0.00 0.01 0.15 

3 0.19 0.01 0.01 0.00 

4 0.00 0.16 0.00 0.00 

 
One can create asymmetry in the energy band 

structure if there is difference in the gates oxide 
thickness or if the applied voltages for both gates are 
not the same [28].  Table 5 (a) presents the quantity 
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|Cmn|max for device 2 in off-state as the structure is 
asymmetric. The front gate oxide thickness = 0.6nm 
and the back gate oxide thickness = 0.2nm for the 
structure in Figure 1. The observation is that for each 
mode, there are always more than two dominant 
term(s). For example, C12|max, C13|max, C14|max and 
C15|max are the dominate terms for the 1st order mode, 
C21|max, C23|max, C24|max, C25|max and C26|max for the 2nd 
order mode and so on. This observation is common for 
any other different dimensions in gate oxide thickness.  
Table 5 (b) presents the quantity |Cmn|max for device 2 
in on-state as the structure is asymmetric where the 
front gate voltage = 0.8V and the back gate voltage = 
0.4V. The observation is that for each mode, there are 
always two or more dominant term(s) as in the 
previous case. This observation is common for any 
other asymmetric applied voltage on the two gates. 
We can conclude that neglection of the coupling 
between some modes is valid only in case of 
symmetric structure with symmetric applied voltage 
for both gates. 

Table 5 
(a) |Cmn|max for device 2 in off-state with 
dominant terms highlighted for asymmetric 
dimensions: front gate oxide thickness = 
0.6nm and back gate oxide thickness = 0.2nm 

    m  
n    

1 2 3 4 5 6 

1 0.01 0.50 0.31 0.16 0.12 0.09 

2 0.52 0.02 0.61 0.38 0.22 0.17 

3 0.32 0.64 0.03 0.73 0.40 0.27 

4 0.15 0.40 0.78 0.04 0.85 0.46 

5 0.12 0.22 0.41 0.91 0.06 0.96 

6 0.09 0.17 0.27 0.47 1.04 0.07 

 
 

(b) |Cmn|max for device 2 in on-state with 
dominant terms highlighted for 

asymmetric voltages: front gate voltage = 
0.8V and back gate voltage = 0.4V 

     m  
n    

1 2 3 4 5 6 

1 0.01 0.25 0.28 0.02 0.04 0.01 

2 0.27 0.03 0.30 0.30 0.02 0.04 

3 0.30 0.32 0.04 0.33 0.28 0.02 

4 0.02 0.32 0.33 0.04 0.28 0.22 

5 0.04 0.02 0.28 0.30 0.03 0.23 

6 0.01 0.05 0.02 0.25 0.25 0.025 

 
The existence of few dominant terms among the 

coupling terms in symmetric FinFET structure 
indicates that no need for full coupling among the 
modes (which is the CMS). We can notice that the 
problem can be decoupled into two smaller problems, 
for device 1 as an example, where modes number 2, 4 
and 6 have to be solved together due to their 
significant coupling. At the same time, modes number 
1, 3, 5 and 7 follow the same case. Therefore, we have 
one problem in three unknowns and the other one in 
four unknowns. Generally, the problem with Nm 

unknowns can be divided into two smaller problems; 
one for the odd modes and the other one for the even 
modes. The size of these problems is   Nm /2 and Nm /2, 
if Nm is even or  (Nm-1)/2 and (Nm+1)/2, if Nm is odd. 
Since the solution of a linear system of N unknowns 
involves N3 operations [29], the proposed PCMS 
relative operations count with respect to the CMS is: 

 

         , if Nm is even                        (6) 

       , if Nm is odd 

 
In the language of the NEGF, the PCMS means we divide the Hamiltonian matrix in eq. (3) into two separate 

Hamiltonians Hodd and Heven that are given by: 
 

,
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is an even number; while i = Nm, p = (Nm +1)/2,    j = 
(Nm-1) and q = (Nm -1)/2 ,if Nm is an odd number. 
Terms connecting even and odd modes are all 

neglected. The electron density and terminal current 
can be then calculated normally within the NEGF [4] 
but one time for the odd modes and a second time for 
the even modes and their contributions are added.   
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4. RESULTS AND DISCUSSION  
The proposed PCMS approach as well as the 

CMS approach were implemented and integrated in 
the FETMOSS simulator [22]. A study was carried out 
on the devices given in Table 1. The purpose of this 
study is to check the accuracy of the PCMS with 
respect to the CMS and to compare the practical 
reduction in simulation time with eq. (6). The 
simulation was carried out on a home PC with 3GHz, 
Core 2 Quad 64 bit AMD processor and 8GB RAM 
memory. 

 
The solution of Schrödinger equation in the 

transverse direction (y -direction) in Figure 1 results in 
subband energies whose values vary in the channel 
direction. Figure 4 depicts well matching of the 
profiles of subband edges along the channel            (x-
direction) for device 3 in on-state for the four lowest 
subbands in the primed valley using PCMS and CMS 
approaches. The four subbands are chosen according 
to the first criteria mentioned before in section 3. 

Figure 4. Subband energy profile along the channel 
for device 3 in on-state for the four lowest subbands in 
the primed valley using PCMS and CMS approaches 

 
The occupation of the different subbands with 

carriers is calculated from the 2D subband carrier 
density N2D (cm-2). Figure 5 illustrates the 2D electron 
density of the lowest subbands along the channel for 
device 3 in on-state. In comparing PCMS with respect 
to CMS approaches, the maximum percentage error 
equal 0.2% with 72.6 % reduction in simulation time 
according to second criteria. 

   
 

 
    

Figure 5. 2D electron density of the lowest four 
subbands along the channel for the primed valley 

for device 3 in on-state using PCMS and CMS 
approaches. 

 
Figure 6 and Figure 7 show the 3D distribution of 

the potential energy and electron concentration 
simulated for device 3 in on-state respectively. The 
error in results between PCMS and CMS approaches 
is less than 0.002 % and 0.02 % respectively according 
to the first criteria. 

 

 
                               (a)                                                                                         (b) 

Figure 6. The 3D distribution of the potential energy for device 3 in on-state for both (a) PCMS and (b) CMS 
approaches. 
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                                      (a)                                                                                  (b) 

Figure 7. The 3D distribution of electron concentration simulated for device 3 in on-state for both (a) PCMS 
and (b) CMS approaches. 

 
The transmission coefficient and terminal current 

versus energy for device 3 in on-state are 
demonstrated in Figure 8 and Figure 9 respectively. 
There is an excellent agreement between the results of 
the proposed PCMS and the CMS approaches for both 
transmission coefficient and terminal current with 
72.6 % computational burden reduction by satisfying 
second criteria. 

 
 

 
Figure 8. The transmission coefficient versus 
energy for device 3 in on-state using PCMS and 
CMS approaches. 

. 

Figure 9. The terminal current versus energy for 
device 3 in on-state using PCMS and CMS approaches 

 
Figure 10 illustrates a sample IDS -VDS 

characteristics at different VGS for device 3.  The drain 
voltage was swept from 0 to VDD (0.7V) with steps of 
0.1V while the gate voltage was swept from 0.3 to 
0.7V in steps of 0.1V. 

According to the first criteria, the curves predict 
exactitude results between the proposed PCMS and 
the CMS approaches. 
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Figure 10. IDS -VDS family of curves for device 3 at different VGS using PCMS and CMS approaches. 
The percentage difference in terminal current and 

electron charge density (3D distribution) between 
PCMS and CMS were calculated and tabulated in 

Table 6 for the various simulated devices. They are 
defined as: 

 

            ,                           (8) 

 
The simulation was repeated many times for 

different bias conditions to check the relative accuracy 
of PCMS. Excellent agreement was found between the 
PCMS and the CMS in all bias conditions and for all 
the simulated devices. Among these bias conditions, 
the cases of off- and on-states are given in Table 6.  

 
Table 6 

Accuracy and computations reduction of the 
PCMS relative to CMS 

Device 1 2 3 4 5 
Nm 7 6 4 4 3 

n off-
state  

7 x10-1 5x10-1 1x10-1 2x10-3 3x10-3 

n on-
state 

1x10-1 3x10-2 2x10-2 2x10-3 2x10-3 

I off-
state  

6x10-3 9x10-4 3x10-5 10x10-4 3x10-4 

I on-
state 

1x10-2 5x10-3 3x10-5 2x10-4 3x10-5 

Nrel 27.2 25 25 25 33.3 
trel off-
state  

26.8 28.6 27.6 26.5 34.9 

trel on-
state 

26.9 26.1 27.4 26.4 35.1 

 
We define the relative time taken by the PCMS 

simulation and the CMS simulation by: 
                                                 

              (9) 

The simulation time in both cases was 
recorded and the relative was calculated and listed in 
Table 6. The predicted value from eq. (6) in section 3 
was also calculated and tabulated. The computational 
burden reduction ranges from 75 to 65 %. The 
predicted and recorded values from the simulation 
agree well. The small difference between them can be 
due to other operations that don’t scale well with N3. 
 
5. Conclusion 

Within the NEGF framework, a computationally 
efficient and accurate model was proposed. The 
approach was termed PCMS due to the separate 
coupling between even modes and odd modes. The 
PCMS was applied to nanoscale n-FinFETs and 
benchmarked against the full-coupling approach 

(CMS). The benchmarking was carried out on set of 
devices from the ITRS targets. In contrast to the fully 
UMS, the proposed approach is valid for both thin and 
thick Si film thickness. Excellent PCMS accuracy 
relative to the CMS with 65 to 75% reduction in 
simulation time was achieved. The PCMS is limited 
for symmetric structures and symmetric gates voltage. 
The proposed approach can be applied to other 
symmetric nanoscale devices like nano-wires, CNT 
and 3-D multi-gate transistors where even and odd 
transverse modes exist. 
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