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1.Introduction 
Many special cases of the diophantine equation  
  ax2+b=cyn,                                                        (1) 
where  a, b, c , n  are positive integers and n ≥ 3, have 
been considered over the years. If we put a=1, b=7, 
c=1 and y=2 in (1) we obtain the equation  
  x2+7=2n,                                                           (2) 
which was studied by an  Indian mathematician 
S.Ramanujan [1] , and heconjectured that the 
equation (2) has only the following  five solutions: 
 (n, x)=(3,1),(4,3),(5,5),(7,11),(15,181). 
This conjecture was first proved by Nagell [2]. In 
2003 Siksek and Cremona [4] solved equation (2) for 
n=p where p is odd prime and they proved that this 
equation has no solution for 11 ≤ p ≤ 188. 
Bugeaud and Shorey [3] were proved that equation 
(1) has no solution when a=1, b=7 and c=4.  
In 2008, Abu Muriefah [5] studied the general case 
px2+ q2m=ynwhere 
p, q are primes under some conditions, and recently 
she proved with Luca and Togbé [6] that the equation  
x2+5a.13b=yn where a, b ≥ 0, has the following 
solution:  
  (x,y,a,b,n)=(70,17,0,1,3),(142,29,2,2,3), (4,3,1,1,4).  
Now we study the equation (1) for a=p, b=72m+1, c=1 
and we prove the following theorem: 
Theorem 1 
If p≠7 , x is an even integer and (h,p)=1 where h is 

the class number of the field ( 7 )p , then the 

diophantine equation 
2 2 17 ,m ppx y                            (3) 

has no solution in integers x and y. 
Proof  
I. (x,y)=1, 
If  x  is even then y is odd, we factorize equation(3)to 
obtain 

 7 7 7 ,
p

mpx pa b     (4) 

where a, b are integers and 
2 27y pa b  . 

On equating the imaginary parts in (4) we get 
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Since y is odd, therefore b is odd, hence a is even and 
(a,7)=1. 
If  b=±7k, 0 ≤  k<m then (5) is impossible modulo 7, 
so b=±7m. 
Let  

7a p b     ,

7a p b     ,                               (6) 

hence from (4) we get 

7 7 , 7 7.p m p mx p x p             (7) 

From (6) and (7) we obtain 
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Since 
2( ,( ) ) 1     and 




 is not a root 

of unity, therefore  ( , )
p

U    is a Lehmer pair has 

no primitive divisor. When [5,29]p , there are 

only finitely many possibilities for the pair ( , )   

and all such instances appear in Table 2 in [7]. A 
quick inspection of that table reveals that there exists 
no Lehmer number which has no primitive divisors 

whose roots   and are in [ 7 ]i p . 

II. (x,y)≠1, 
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Let x=7uX, y=7vY such that u, v> 0 and (7, X)=(7, 
Y)=1.  
Equation (3) becomes 

2 2 1(7 ) 7 7 .u m pv pp X Y                    (8)  

There are three cases: 
(1) If  2u=min(2u, pv, 2m+1) then equation (8) 
becomes  

2 2( ) 1 27 7 .m u pv u ppX Y     

This equation is impossible modulo 7 unless  pv-
2u=0, so 

2 2( ) 17 ,m u ppX Y    

which has no solution from the first part of this proof, 
since 
 (X, Y)=1. 
(2) If  2m+1=min(2u, pv, 2m+1) then equation (8) 
becomes 

2 2 1 2 2 17 1 7 ,u m pv m pp X Y      

This equation is impossible modulo 7 unless pv-2m-
1=0, so 

1 27 (7 ) 1 .u m pp X Y                           (9) 

By [8] equation (9) has no solution. 
(3) If  pv=min(2u, pv, 2m+1) then we get  

2 2 2 17 7 .u pv m pv pp X Y                  (10)   

This equation is possible only if  2u-pv=0 or 2m+1-
pv=0 , and these two cases have been discussed 
before.◊ 

 

 
Now, we introduce a nice result in rational.

 
Theorem 2 
Let p be an odd prime such that  p-7 has no perfect 
square.  
I-The diophantine equation 
  x2+7=pyp-1,                                        (11) 
has no solution in rational  x and y such that 

Y
y

t
  where Y is an odd integer. 

II- The diophantine equation   

   x2+7=py(p-1)/2 1(mod4)p                  (12)    

has no solution in rational x and y such that 

Y
y

T
  where Y is an odd integer. 

Proof 
Assume that x = X/Q,  y = Y/T is a solution of (11) or 
(12) for some integers X, Y, Q, T with Q≥1, T≥1 and  
    (X, Q)=(Y,T)=1.                                     (13)  
Put 

0, 3(mod4)

1, 1(mod4).

if p
n

if p


 


 

Then equation (11) and (12) can be written in the 
form 

1 1 1

2 2 22 2 27

p p p
n n n

X T Q T pQ Y

  

   .      (14) 

Considering equation (14) modulo Q2, and from (13) 
we get  

1

2 20(mod ).

p

n

T Q



                                 (15)    

In the same way, we get 
1

2 20(mod ).
n

p

pQ T


                             (16)   

Since ( 1) / 2np   is even, it follows from (15) 

and (16) that  

1

22

p

n

T Q



 , hence from (14) we get 
1 1

2 22 7

p p

n n

X T pY

 

  .                           (17) 

So it follows that 
    (X, p)=(T,p)=(X,T)=(Y,T)=(X, Y)=(X, 7)=1. 

 
Rewrite equation (17) as 

1 1 1

1 12 2 2

7 7

p p p

n n n

X T i X T i pY

  

   
      

  

.     (18) 

It is easy to see that the two algebraic integers 
appearing in the left-hand side of equation (18) are 

coprime in the ring of algebraic integers ( 7).i  

Since the ring ( 7)i  is a unique factorization 

domain it follows that there exist four integers A, B, s, 

v with (mod2), (mod2)A B s v     and 

two units ±1 such that 

1

12

1

27 7
7
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,           (19) 

where 

2 27

4

A B
p


  . 

Multiplying both parts of (19) by 

1 1
1

2 22
n n

p p

B
 


  we 
get 

  1

11 1 1 1
1

22 2 2 22 7 7 ( 7) ,
nn n n n

pp p p p

XB T B i A B i sB Av A B i v


   
  

       
 

for some U, K, R in Z . Comparing imaginary parts 
and taking into account that  p│A2+7B2 we get 
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1

1 1 1 1
1

2 2 2 22 (mod )
n n n n

p p p p

T B BU p


   


 . 

Raising both sides of the last congruence to the power 
2n+1 , by Fermat's little theorem we get 

1 12 22 (mod ), {0,1}.
n n

B p n
 

   

For  n=1, we get 
2 2( 4)( 4) 0(mod )B B p   . 

● If  
2 4 0(mod )B p  , then  B2=4+kp ≥ 0 

for some integer k, and  we get  4p=A2+28+7kp , 
which implies that k=0, so B2=4. Hence   

22 27
7,

4 2

A B A
p

  
   

 
 

this implies that p-7 is a perfect square and we get a 
contradiction. 

● If 
2 4 0(mod )B p  , then  B2 =-4+k1p ≥ 0 

for some integer k1, and we get 4p=A2-28+7pk1, 
which implies that 4p+28-7pk1 ≥ 0,that is  k1=0,1. 
If k1=0, then  B2=-4 which is not true, and if  k1=1, 
then  B2 =-4+p,  
and we get p=5. Hence from equation (11) and (12) 

we obtain 
2 3(mod5)x   , which is impossible.  

By using the same method we can prove that equation 
(11) has no solution when n=0.  So our equations (11) 
and (12) has no solutions.◊ 
In the following theorem we study the equation  
x2+112k+1=yn which was studied by the two 
mathematicians Demirpolat and Cenberci [9] but they 
failed to find all solutions of it. 
Theorem 3 

 
   The diophantine equation 
  x2+112k+1=yn,  n ≥ 3, k ≥ 0,                             (20)   
  has only three families of solutions and these 
solutions are       
(x, y, k, n)= (4. 113M , 3. 112M , 3M,3), 
  (58. 113M ,15. 112M , 3M,3), ( 9324. 113M,443. 
112M,3M,3).           
Moreover  when  n=3 , (x, y)=1 and 

1(mod3),k    the equation may have a solution  

given by 
38 3x a a   where a is an integer 

satisfies 

2 111 1

3

k

a
 

 . 

Proof 
If k = 0, then the equation (20) has only two solutions 
given by  
(x, y, n) = (4,3,3),(58,15,3) [10]. 

So we shall suppose  k > 0. 

I. Let 11 | x  then from [11] the equation has no 

solution when n ≥ 5. 
(1)n=3, we factorize equation (20) to obtain 

311 11 ( 11) .kx a b     (21) 

where y=a2+11b2 is odd, so a and b have the opposite 
parity.  
Or 

311
11 11 ( ) ,

2
k a b

x
 

              (22)    

where 
2 211

and 1(mod 2).
4

a b
y a b


    

On equating the imaginary parts in equation (21) we 
get 

2 211 (3 11 ).k b a b   (23) 

From (23) we deduce that 11 , 0lb l k    , 

so (23) becomes  
2 2 111 3 11 .k l la                         (24) 

Equation (24) is  impossible modulo 11, 
unless l = k, that is 

2 2 11 3 11 .ka                                 (25) 
The negative sing is impossible, and for the positive 

sing equation (25) has no solution if 3 2 1,k  [11]. 

So, the equation (20) may have solution when n=3 
and 1(mod 3)k  and this solution if it exists is 

given by 
38 3x a a   where a is an integer 

satisfies 

2 111 1
.

3

k

a
 

  

Now we equating the imaginary parts in (22) and we 
get 
8.11k=b(3a2-11b2).                              (26)  

 
We have two cases: 
i. If b=±11l where 0 ≤ l< k, then the equation (26) 
is impossible modulo 11. 
ii. If b=±11k, then the equation (26) becomes 
±8=3a2-112k+1.This equation has one solution 
(a,k)=(21,1) [12], which implies x=9324 and y=443. 

(2) n=4, here we can write equation (20) as 
2 2 1

2

11 ,

1.

ky x

y x

  


    
We get 
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2 2 12 11 1,ky  
 

this equation is impossible modulo 11. 
Summarizing the above, equation (20) has the 
following solution when (11,x)=1  we  
  (x, y, k, n)= (4,3,0 3), (58,15,0,3), (9324,443,1,3).   

II. Let,11 x  then 11sx X  and 11ty Y  

such that s, t>0 and  
(X, 11)=(Y, 11)=1. Equation (20) becomes 

2 2 2 111 11 11 ,s k nt nX Y  (27) 

We have two cases: 
(1)  If 2s=nt, then from (27) we get 

2 2( ) 111 ,k s nX Y    

this equation has solution when n=3 and either k-s=0 

or k-s=1, since 2s=3t then3 s . Let s=3M then t=2M , 

hence either k=3M or k=3M+1. 
So equation (20) has three families of solution 
(x,y,k,n)=(4.113M,3.112M,3M,3), (58. 113M ,15. 112M , 
3M,3), 
( 9324. 113M,443. 112M,3M+1,3). 
(2)  If  2k+1=nt then equation (27) become 

1 211(11 ) 1 ,s k nX Y   
 

which has no solution [8].◊ 
 

By using the same argument used in Theorem 2 we 
get the following:  
 
Theorem4 

If  p  an odd prime such that 5( 8)p mod and 

(h,p)=1 where his the class number of the field 

( 11 )p , then the diophantine equation 

px2+112k+1=yp, p> 11, 
has no solution in integers x and y.◊ 
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