Anxiety, Autonomic Control of the Heart, and Cardiac Dysrhythmogenesis in Patients with Acute Coronary Syndrome

Mohannad E. AbuRuz, PhD, RN

Nursing Education and Development Department. King Fahad Specialist Hospital-Dammam-KSA
mohannadeid@yahoo.com

Abstract: Coronary heart disease (CHD) is the number one killer in the United States. Acute coronary syndrome (ACS) is the primary consequence of CHD. Anxiety is very common among ACS patients and has been shown to affect their outcomes. High anxiety levels are associated with more cardiac complications and poor quality of life. To date, the mechanisms by which anxiety enhances these complications are not clear. In this review, we will discuss: First, the basics of the cardiac conduction system and the effect of the autonomic nervous system on cardiac function; second a review of the relationship among anxiety, ACS, and cardiac dysrhythmias; third, an amplification of the mechanisms of cardiac dysrhythmias early after ACS; and forth a clarification of the relationship among anxiety, heart rate variability and dysrhythmias after ACS.

1. Introduction

Despite improvements in the treatment of cardiovascular diseases, coronary heart disease (CHD) remains the number one cause of death in the United States and is predicted to become the number one cause of death worldwide by the year 2020. (Chockalingam et al. 2000; Go et al 2013.; Reddy et al. 1998) Acute coronary syndrome (ACS) the primary consequence of CHD is a spectrum of cardiovascular conditions that include angina, non-Q wave and Q-wave myocardial infarction.(Go et al. 2013; Yeghiazarians et al. 2000) Approximately every 44 seconds, an American will have an MI. It is estimated that 1.2 million Americans will have a new or recurrent acute myocardial infarction (AMI) in the year 2013.(Go et al. 2013) Of these, approximately 340,000 will die prior to hospitalization or in the emergency department. Most of these deaths are sudden cardiac deaths due to asystole resulting from ventricular fibrillation or ventricular tachycardia.(Go et al. 2013) For those who initially survive, future morbidity will be 15 times higher than the general population. (Go et al. 2013)

Anxiety is the earliest, most common psychological response to ACS including AMI,(Crowe et al. 1996; Herrmann et al. 2000; Januzzi et al. 2000; Ketterer et al. 2004; Kubzansky et al. 1998; Malan 1992; Moser et al. 1996) In patients suffering ACS the prevalence of anxiety may be as high as 70-80%.(Abu Ruz et al. 2010; Abu Ruz et al. 2011; Crowe et al. 1996; Moser & Dracup 1996) This anxiety stems from fear of death, a strange intensive care unit environment, loss of personal control, unpredictable consequences, diagnostic or therapeutic procedures, cost of treatment, and potential inability to return to work. (Abu Ruz et al.2010; Abu Ruz et al. 2011; Moser & Dracup 1996) Anxiety has been shown to significantly impact recovery during hospitalization for AMI and to increase the severity of chest pain in anginal patients.(Bengtson et al. 1996; Costa et al. 1985; Crowe et al. 1996; Davies et al. 1993; Ketterer et al. 2000) Patients with high anxiety during the first 48 hours after AMI have up to 6 times higher risk of developing in-hospital complications such as reinfarction, recurrent ischemia, ventricular fibrillation or tachycardia, and sudden cardiac death.(Moser & Dracup 1996; Watkins et al. 2002) They were also two times higher risk for atrial complications.(Moser & Dracup 1996; Watkins et al. 2002) An understanding of the physiological and pathophysiological mechanisms by which anxiety leads to these complications will help health care providers effectively manage ACS patients. Consequently, their overall prognosis may be improved. The purpose of this paper is to review the effect of the autonomic nervous system (ANS) on the cardiovascular system and to show the relationship between anxiety and dysrhythmogenesis. This paper is divided into two sections. The first section is an overview of the ANS control of the heart. The second section describes how anxiety enhances fatal dysrhythmias either by stimulating the sympathetic nervous system (SNS) and/or inhibition of parasympathetic nervous system (PSNS) and gives a basic idea about the relationship among anxiety, heart rate variability (HRV), and dysrhythmogenesis.
ANS control of the heart
A) Overview of the conduction system:

The internal pacemaker of the heart, the sino-atrial node (SA node), can initiate a heart beat and maintain regular rhythm without extrinsic neural input. However, under normal physiological conditions, heart rate is regulated by the ANS. Thus, while external neural input is not necessary to initiate a heart beat, the rate at which the heart beats is primarily under the external control of the ANS. This means that any stimulus affects the ANS can subsequently affect heart rate.

The SA node is made up of a specialized myocytes which initiate electrical impulses (i.e. action potentials) at rate about 60 beats/minute at rest. These electrical impulses travel at speed of ~1m/second through the atrium, generating atrial systole. When these impulses reach the atroventricular node (AV node), which is a small mass of cells and connective tissue in the lower posterior region of the atrial septum, they are delayed for approximately 0.1 second. This delay allows atrial contraction to occur before ventricular contraction begins.(Neurocardiology 1988; Paris et al. 1992; Zipes 2000) Tachyarrhythmias caused by SNS stimulation decrease the delay time preventing the atria from having enough time to fill the ventricles. The end result of this process is a reduction in ventricular end diastolic volume and stroke volume.(Neurocardiology 1988; Paris et al. 1992; Zipes 2000) This might explain why some ACS patients have dizziness when they have high rate tachycardia. On the other hand stimulation of PSNS decreases SA node activity and AV nodal conduction velocity, resulting in sinus bradycardia and prolongation of the AV delay (i.e., more than 0.2) ending in an AV block.

The large diameter muscle fibers of the Bundle of His pass the electrical impulse from the AV node to the upper part of the interventricular septum. The main bundle fibers split into the right and the left bundle branches. These branches are broad, fast-conducting myocytes that terminate at Purkinje fibers. Purkinje fibers are the widest fiber set of connections in the subendocardium. The role of these fibers is to spread the electrical impulse rapidly through the ventricles. Within the ventricular wall the impulse is transferred from myocyte to myocyte in an outward direction (i.e. endothelium to epithelium) until the whole wall is excited resulting in ventricular contraction.(Neurocardiology 1988; Paris et al. 1992; Zipes 2000)

B) Neural control of the heart:
Afferent innervation

The heart is innervated by the SNS and PSNS divisions of the ANS. The afferent cardiac nerves of the SNS enter the spinal cord through the upper 4-5 thoracic roots and terminate in the dorsal funiculus on the same cell receiving afferent nerves from jaw, arms, neck and shoulders. This explains why ACS patients may perceive pain from these sites during cardiac ischemia.(Foreman et al. 1980; Talman et al. 1993) The afferent cardiac nerves of SNS innervate almost all portions of the heart: ventricular and atrial myocardium, pacemaker, and conduction system. On the other hand, the parasympathetic afferent cardiac nerves originate from cells within the nodose ganglia. Their sensory endings primarily innervate the atria. They project to the medulla oblongata where they terminate in the nucleus tractus solitarii (NTS). (Kalia et al. 1980; neurocardiology 1988; Paris et al. 1992; Zipes 2000)

Efferent control

Cardiac efferent preganglionic parasympathetic fibers originate in the brainstem. Their axons pass via the tenth cranial nerves (i.e. right and left vagus nerves) to the heart where they terminate on neurons of the intracardiac ganglia. (Armour et al. 1997; neurocardiology 1988; Paris et al. 1992; Zipes 2000) Cardiac efferent preganglionic sympathetic fibers originate from nerves at segmental levels of T1 to T5. (neurocardiology 1988; Paris et al. 1992; Zipes 2000) Sympathetic and parasympathetic fibers are distributed differently in the heart. Sympathetic fibers are distributed widely over the heart.(Kent et al. 2001; Talman & Kelkar 1993) In contrast, parasympathetic fibers are concentrated in the SA node, AV nodes, and atrial muscle. Consequently, sympathetic nervous system affects heart rate, atrial and ventricular contractility, while the parasympathetic nervous system affects mostly heart rate AV-nodal conduction velocity and atrial contractility.

Autonomic influences on cardiac function

The stimulating effect of the SNS neurons is characterized by slow onset (1 to 3 second latency) and long duration.(Talman & Kelkar 1993; Zipes 2000) Conversely, PSNS stimulation has a very short onset latency (200 to 400 msec) (neurocardiology 1988; Paris et al. 1992; Zipes 2000) and resolves quickly. This difference depends on the inactivation of the transmitter released from each. The inactivation of the catecholamines of sympathetic stimulation usually occurs slowly by reuptake and diffusion, while acetylcholine released by the vagal nerves is inactivated quickly (2.5 seconds) by acetylcholinesterase. (neurocardiology 1988; Paris et al. 1992; Zipes 2000) Therefore, tachyarrhythmias which are due to SNS stimulation are characterized by a slow onset and a sustained (> 30 second) activity requiring the health care team members administer medications to control heart rate and to decrease the work load of the heart.(Kennedy 1997)
Conversely, changes in PSNS activities is responsible for rapid changes in heart rate as slowing of the heart rate with each expiration “sinus dysrhythmia”.

Sympathetic activation stimulates the medulla of the adrenal gland to secrete epinephrine into the blood stream and the sympathetic fibers in the heart to release nor-epinephrine. Epinephrine and nor-epinephrine (catecholamines) bind at both alpha (α) and beta (β)-receptors. These receptors are further subclassified into a1, a2, b1, and b2. Most of α receptors are found on blood vessels. Peripherally, β1 receptors are found in the heart and β2 receptors in the lung.(Frederick 1991) Among these 4 receptors, α1 and β1 are the ones that have the major influence on the cardiovascular function.

Catecholamines activate β1-receptors resulting in increased heart rate (positive chronotropic effect), increased contractile force (positive inotropic effect), increased AV node conduction velocity (positive dromotropic effect). (neurocardiology 1988; Paris et al. 1992; Zipes 2000) Stimulation of post junctional/synaptic α1 receptors by catecholamines will lead to contraction of the smooth muscle layer of blood vessels resulting in vasoconstriction. This includes coronary arteries, and may explain why anxious ACS patients have lower coronary perfusion and chest pain during high anxiety periods.

Parasympathetic stimulation releases acetylcholine which binds to muscarinic M2 receptors on the myocyte membrane. This produces bradycardia by two electrophysiological actions: first, by reducing the slope of the pacemaker potential which will reduce the movement of the Na+ and Ca2+ into the cell during different phases in the action potential. This will prolong the time needed to reach the threshold and prolongs the plateau phase. The second action is making the cell membrane potential more negative at rest by moving more K+ extracellularly. (neurocardiology 1988; Paris et al. 1992; Zipes 2000) This will result in a prolongation of the time needed by the action potential to reach the threshold, and so the heart rate will decrease resulting in bradycardia. (neurocardiology 1988; Paris et al. 1992; Zipes 2000)

Relationship among anxiety, ACS, and cardiac dysrhythmias

Although the relevant pathophysiological mechanisms of the relationship between anxiety and dysrhythmias in ACS are not fully understood, (Kubzansky et al. 1998) our understanding about the role of ANS in the genesis of cardiac dysrhythmias is sufficient to highlight key events. (Shusterman et al. 1998) There is evidence that SNS is responsive to external stimuli such as anxiety. Anxiety neurotransmitters include catecholamines which also can be released as a result of SNS stimulation. (Frederick 1991)

Situation that known to produce anxiety, such as public speaking, being in a large crowd, or frightening situation such as a sudden earthquake, can lead to an increase in plasma catecholamines levels by 40-200%. (Bhat et al. 1979; Heninger et al. 1988; Nadeau et al. 1979) High levels of catecholamines were found at the time AMI patients complained of anxiety or pain. These times were associated with significant high rates of ventricular tachycardia, premature ventricular contractions, and sinus tachycardia. (Bhat et al. 1979; Nadeau & de Champlain 1979)

When anxiety stimulates the sympathetic nervous system or decreases parasympathetic activity, (Kawachi et al. 1995; Kennedy 1997; Shusterman et al. 1998; Thayer et al. 1996; Watkins et al. 2002; Watkins et al. 1998) a cascade of physiological responses that increase myocardial oxygen consumption, (Kamarck et al. 1991; Muller et al. 1989) enhance cardiac vascular reactivity, (Panza et al. 1991) platelet aggregation, (Brezninski et al. 1988) lower threshold for dysrhythmias, (Kamarck & Jennings 1991; Kennedy 1997; Muller et al. 1989) decrease heart rate variability (HRV), and make the atherosclerotic plaque more susceptible for rupture (Davies et al. 1984; Falk 1983; Falk et al. 1995; Kennedy 1997; Kubzansky et al. 1998) is generated. As a result, persons faced with untreated anxiety are particularly prone to cardiac dysrhythmias or sudden cardiac death. (Gorman et al. 2000; Kennedy 1997; Kubzansky et al. 1998; Moser & Dracup 1996; Voridis et al. 1983) For this reason, mechanisms linking anxiety to dysrhythmias can be clarified by two major dimensions: stimulation of SNS and inhibition of PSNS (Figure.1).

A) Stimulation of SNS

When anxiety stimulates the SNS, there is an increase in the catecholamine levels in the plasma and in the cardiac tissue itself. (Bacaner et al. 2004; Kennedy 1997; Newton et al. 1996; Talman & Kelkar 1993) With sufficient SNS stimulation, catecholamine may, in fact, reach a toxic level in cardiac tissue. (Bacaner et al. 2004; Kennedy 1997; Newton & Parker 1996; Talman & Kelkar 1993) The actual mechanism for this is unknown, but evidence suggests that it is related to the intrinsic release of nor-epinephrine from cardiac sympathetic nerves. (Shusterman et al. 1998) The final results of this process is an activation of the myocyte calcium channel leading to hypercalcemia intracellularly. (Kennedy 1997) This hypercalcemia can generate a new action potential during the refractory period of the original action potential, and this phenomenon called after depolarization. These after depolarizations can result in ventricular and supraventricular tachyarrhythmias. (Kennedy 1997; Priori et al. 1990) In an animal study, (Priori et al.
administration of calcium channel antagonists was shown to prevent the occurrence of fatal dysrhythmias following myocardial ischemia. This suggests that catecholamine-induced hypercalcemia in the myocardium is a primary cause of ventricular dysrhythmias following an ACS.

Ischemia: The sympathetic stimulation from emotional anxiety is considered responsible for producing α-adrenergic coronary vasoconstriction. This vasoconstriction may increase cardiovascular resistance and decrease coronary blood flow.(Billman et al. 1981) In patients with coronary artery disease, this vasoconstriction may lead to the development of ACS events and make these patients more vulnerable to ischemic damage and life threatening complications.(Kamarck & Jennings 1991; Pozzati et al. 1996; Vallance et al. 1990)

It is known that the electrocardiogram (ECG) changes and dysrhythmias observed during coronary vasoconstriction and during periods of increased oxygen demand are directly caused by nor-epinephrine released from sympathetic nerves.(Talman & Kelkar 1993) Elevated left cardiac sympathetic activity (induced by anxiety) can reduce the ventricular myocyte’s refractory period (Gorman & Sloan 2000; Talman & Kelkar 1993) and lower ventricular fibrillation threshold,(Breziniski et al. 1988; Kennedy 1997) regardless of whether the cardiac muscle is well perfused or ischemic. Anxiety is associated with decreased beta-endorphin production resulting in lowered pain threshold.(Light et al. 1991) Ischemia, which usually occurs in ACS, is also associated with decrease beta-endorphin production.(Ketterer et al. 2004) Therefore, anxious patients would be expected to experience more pain, which in turn would increase SNS activity making them more susceptible to further ischemia and complications than non-anxious patients.(De Jong et al. 2004; De Jong et al. 2005)

B) Inhibition of PSNS

Traditionally, health care team members concentrated on the role of SNS as a dysrhythmogenic mechanism.(Shusterman et al. 1998) However, it is necessary to have an appropriate balance between sympathetic and parasympathetic activities to maintain normal cardiac stability, and to avoid excessive sympathetic cardiac excitability which leads to complications.(Talman & Kelkar 1993) The parasympathetic system control dominates at rest, or at times when there is no psychological distress.(Gorman & Sloan 2000; Kubzansky et al. 1998; Paris et al. 1992) When patients develop an acute coronary event, high levels of anxiety cause a greater reduction in PSNS control.(Watkins et al. 2002)

This results in increased heart rate and myocardial ischemia due to increased myocardial workload. Combined, these factors play a significant role in the development of malignant ventricular dysrhythmias(Hohnloser et al. 1994; Watkins et al. 1998) and sudden cardiac death in these patients. (Schwartz et al. 1992) Conversely, stimulation of the vagus nerve (Lucreziotti et al. 2000; Schwartz et al. 1984) have worked as antifibrillatory through M1-receptors and inhibition of presynaptic nor-epinephrine release.(Verrier et al. 1997)
these dysrhythmias early after ACS events, descriptions of the cardiac action potential phases and the effect of ischemia on these phases are presented next.

Phases of action potential

The action potential is a change in electrical activity along the cell membrane. At rest (polarized state) a high intracellular negative (from -70 to -90 mV) charge exists relative to the extracellular region. (Weller et al. 1989) At this time, the cell membrane is essentially impermeable to sodium ions (Na+) and permeable to potassium ions (K+). This allows K+ to move freely outside while Na+ is prevented from entering.

When an electrical stimulus from the action potential of an adjacent cell reaches the threshold at approximately -60 to -65 mV, Na+ channels open which increase the sacrolemmal permeability to Na+. With the fast Na+ channels open, the inward rush of Na+ is extremely rapid and briefly causes the cell to depolarize and flip to a positive potential of +20 to +30 mV. (Weller & Noone 1989) This is known as Phase 0 (fast-response) of the action potential. After a very short period of time, the fast Na+ channels are automatically inactivated. At this point, Na+ no longer rushes into the cell and the cell has an early repolarization period (phase 1) at about 0 mV. During this phase (phase 1) K+ continue to move outside via a class of K+ channels that open transiently in response to depolarization then quickly inactivate. This phase usually occurs in epicardial myocytes and Purkinje fibers. Sino-atrial and AV nodes don’t have this phase.

During the plateau phase (phase 2) another set of channels, the L-type calcium (Ca2+) channels, slowly open and allow the influx of Ca2+. Also during phase 2, K+ tends to diffuse out of the cell, balancing the slow inward flux Ca2+, thereby maintaining the plateau of the action potential.

Phase 3 is the final repolarization phase and depends on two processes. The first is the inactivation of the Ca2+ channels, thereby preventing further influx of Ca2+. The other is continued efflux of K+ out of the cell. Both of these processes cause intracellular environment to become more negative, thereby reestablishing resting membrane potential. Phase 4 is the return to resting membrane potential. The excess Na+ that entered the cell during the depolarization is now removed from the cell in exchange for K+ by means of Na+/ K+ pump. This mechanism returns intracellular concentration of Na+ and K+ to the levels before depolarization and is essential for normal ionic balance.

Ischemia and action potential

Ischemia raises transmembrane potential (the difference in the charge between intracellular and extracellular) to a less negative state. In this situation, the fast response (Na+ inward current) is depressed and the conduction relies primarily on the slow response (Ca2+ inward current). This mechanism is referred to as “slow-response” action potential. (Weller & Noone 1989) The results of these changes are immediate (2 to 10 minutes) decreased amplitude and increased duration of action potential. (Philip 2001; Pogwizd et al. 1990) Within 12 to 30 minutes after ischemia, electrophysiological alterations such as slow conduction throughout the ischemic tissue and variable degrees of conduction block occur. (Philip 2001; Pogwizd & Corr 1990) Most of these electrophysiological changes occur due to slow response action potential.

Mechanisms of cardiac dysrhythmias

Cardiac dysrhythmias associated with ischemia-related changes in the action potential that occur early after ACS events have two major mechanisms: reentry and abnormal impulse formation. (Lazzara et al. 1988; Rosen 1988) Reentry, which is reexcitation of previously activated cardiac tissue, is believed to be the major mechanism underlying lethal cardiac dysrhythmias that occur early after ACS events. (Mandel 1987; Philip 2001; Rosen 1988) Among the mechanisms responsible for abnormal impulse formation are enhanced automaticity and triggered activity. Automaticity is divided into normal and abnormal. Triggered activity is further divided into two subcategories: early after depolarization (EADs) and delayed after depolarization (DADs) (Figure.2).

Reentry: Reentry is the return of the impulse to excite previously activated myocardial tissue that has passed the absolute refractory period. (Weller & Noone 1989) Reentry occurs when there is an appropriate anatomic or functional tissue loop. For reentry to occur, a block must exist in one portion of the loop and conduction must be slow enough (conduction delay) through the rest of the loop to permit recovery (repolarization) of the blocked area to restore sufficient excitability to respond to the impulse. (Mandel 1987) To achieve critical block and conduction delay, a premature beat is usually required to initiate reentry because premature beats are more likely to encounter refractory tissue and are propagated with much slower conduction velocity.

Abnormal impulse formation

Automaticity: Normal automaticity is defined as the ability of pacemaker cells and cells in the conduction system to generate spontaneous action potential. Spontaneous activity is the result of depolarization during diastole caused by a net inward current that progressively brings the membrane potential to threshold. The ionic mechanisms
underlying normal sino-atrial node and Purkinje fibers automaticity include a hyperpolarization activated inward Na$^+$ current (DiFrancesco 1985; DiFrancesco 1995) and decay of outward K$^+$ current. (Vassalle 1995)

Abnormal automaticity or depolarization-induced automaticity is observed under conditions of reduced resting membrane potential, such as ischemia or infarction that occur in ACS events. During ischemic states, the resting membrane potential of ventricular muscle may decrease from normal value of about -90 mV to -60 mV. This may cause spontaneous diastolic depolarization. The ionic basis for diastolic depolarization in abnormal automaticity may be similar to that of normal automaticity in sino-atrial node, consisting of decay of outward K$^+$ current with progressive activation of Ca$^{2+}$ inward current.

After-depolarization and triggered activity:

These are generally divided into early after depolarization (EAD) and delayed after depolarization (DAD) subclasses. EADs interrupt repolarization during phase 2 or phase 3 (or both) of the cardiac action potential, whereas DADs arise after full repolarization (Phase 4). When an EAD or DAD amplitude brings the membrane potential to its threshold potential, a spontaneous action potential referred to as a triggered response is the result. (Philip 2001) These triggered responses are responsible for some of tachyarrhythmias. (Philip 2001)

EADs: EADs are observed in isolated cardiac tissues exposed to injury; (Lab 1982) altered electrolytes, hypoxia and acidosis; (Adamantidis et al. 1986; Coraboeuf et al. 1980) catecholamines; (Priori & Corr 1990; Volders et al. 1997) and pharmacological agents including anti-dysrhythmic drugs; (Davidenko et al. 1989; Philip 2001) Ventricular hypertrophy also predisposes to the development of EADs. (Nuss et al. 1999; Philip 2001; Volders et al. 1998) It has been shown that anxious individuals with family history of coronary heart disease have a higher left ventricular mass, which predisposes them to this type of mechanism if they develop ACS events. (Piccirillo et al. 1999) Although specific mechanisms of EAD may differ, a critical prolongation of repolarization accompanies most of EADs. This usually occurs because of reduction of net outward current; either due to an increase in inward (Ca$^{2+}$ current) current or decrease in outward current (K$^+$ Current), leading to increase intracellular positivity. Since ischemia developed in ACS events prolongs action potential duration, it provides the ideal situation for EADs to occur.

DADs: DADs that reach the threshold give rise to spontaneous responses referred to as triggered activity. (Philip 2001) DADs and DAD-triggered activity are observed under conditions that cause increase in intracellular Ca$^{2+}$. This hypercalcemia occurs either via: (a) enhancement of Ca$^{2+}$ entry by catecholamines, pharmacological agents as digoxin and quinidine; or (b) reduction of reuptake and/or increase release of Ca$^{2+}$ from sacroplasmic reticulum. (Priori & Corr 1990) Agents that prolong repolarization facilitate the induction of DAD activity by augmenting Ca$^{2+}$ entry.

DADs are always induced at relatively rapid rates. Therefore, clinical dysrhythmias that might be caused by DADs include: idiopathic ventricular tachyarrhythmias (i.e., ventricular tachycardia), supraventricular tachycardia, and accelerated idioventricular rhythm that occurs in a setting of myocardial infarction. (Cardinal et al. 1986; Cardinal et al. 1992)

![Figure 2. Classification of cardiac dysrhythmic mechanisms after ACS events.](http://www.jofamericanscience.org)

Anxiety, heart rate variability, and dysrhythmias

HRV refers to an increase and/or decrease over time in the RR interval which is an indication of beat-to-beat variability in heart rate. (Kara et al. 2003) Several studies have advocated HRV as an index of cardiac autonomic function as influenced by the brain. (Gorman & Sloan 2000; Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology 1996; Kara et al. 2003) Many investigators have reported that specific changes in HRV are related either to reduction in parasympathetic stimulation or to an increase in sympathetic autonomic stimulation. (Carney et al. 1988; Gorman & Sloan 2000; Kawachi et al. 1995) Reduced HRV can result from either by parasympathetic system suppression or by increase sympathetic nervous system stimulation. On the contrary, HRV increases when there is an increase in the parasympathetic activity or reduction in sympathetic nervous system activity.

Many investigators have shown that anxiety decrease HRV resulting in tachycardia among different conditions.
populations such as: generalized anxiety disorder,(Thayer et al. 1996) posttraumatic stress disorder,(Cohen et al. 1997) panic disorder,(Yeragani et al. 1993) phobic anxiety, and even in young healthy people with high trait anxiety.(Watkins et al. 1998) One attractive possibility is that anxiety decreases HRV via a reduction in vagal stimulation, thereby leaving the heart exposed to unopposed stimulation by the SNS, making it more vulnerable to fatal dysrhythmias and sudden cardiac death.(Bigger et al. 1992; Gorman & Sloan 2000; Huikuri et al. 1992; Levy 1997) In patients suffering coronary artery disease the incidence of dysrhythmias (i.e. ventricular tachycardia or ventricular fibrillation) was highest at 9 am and 6pm.(Shusterman et al. 1998) These times coincide with circadian peaks in catecholamine levels.(Bigger et al. 1992; Kamarck & Jennings 1991; Muller et al. 1989) Another possible explanation is the elevation of the catecholamine level due to SNS stimulation from anxiety which is associated with the day time activities in comparison with the night time activities.

Interestingly, sudden changes in the HRV just prior to fatal ventricular dysrhythmias and sudden cardiac death among ACS patients have been observed.(Bigger et al. 1992; Huikuri et al. 1992) Therefore, some health care team researchers have considered these changes as a warning marker for these dysrhythmias. Moreover, reduced HRV has been shown to independently predict sudden cardiac death due to dysrhythmias.(Bigger et al. 1992; Huikuri et al. 1992)

Summary

There is accumulating evidence for a functional relationship among anxiety, imbalance of sympathetic, and parasympathetic control of the heart, and the occurrence of fatal cardiac dysrhythmias. This imbalance can, most of the time, lead to increase in SNS stimulation which is associated with different mechanisms at the cellular level and blood vessels leading to fatal dysrhythmias. Electrical changes at cellular level include: reduced refractory period, lowered dysrhythmias threshold, high catecholamine levels, and hypercalcemia, predisposing ACS patients for dysrhythmias. Coronary arteries are also affected by the imbalance between the sympathetic, parasympathetic control. Alpha-adrenergic coronary vasoconstriction, leading to an increase in cardiovascular resistance and a decrease in coronary blood flow, is the apparent mechanism for the development of cardiac ischemia and dysrhythmias in ACS patients. However, the suppression of PSNS by anxiety is playing an important role in the dysrhythmogensis in ACS. This suppression will increase heart rate and myocardial work load, decrease HRV leading to ischemia and dysrhythmias.

Acknowledgements:

I would like to thank all those who have helped make this review a success: University of Kentucky faculty: Professor. Terry Lennie and Professor. David Randall

Corresponding Author:

Dr. Mohannad Eid AbuRuz
Nursing Education and Development Department
King Fahad Specialist Hospital-Dammam, KSA
E-mail: mohannadeid@yahoo.com

References

41. Kennedy HL. Beta blockade, ventricular arrhythmias, and sudden cardiac death. Am J Cardiol 1997; 80 (9B):29J-34J.

8/3/2013