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Abstract: In this article, we implement a relatively new numerical technique and we present a comparative study 

among Homotopy perturbation method, Parametrized Perturbation method and the Variational Iterational method. 

These methods in applied mathematics can be an effective procedure to obtain for approximate solutions. The study 

outlines the significant features of the three methods. The analysis will be illustrated by investigating nonlinear 
vibration behavior of a buckled beam subjected to an axial load. This method can easily extend to solve other 

nonlinear vibration equations of the beams, plates and shells in the future. 
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1. Introduction 
        Vibration analysis of the beams is an important 
issue in structural engineering applications such as 

long span bridges, aerospace vehicles, automobiles 

and many other industrial usages. The dynamics of 

continuous or distributed parameter systems, such as 

beams, plates, and shells, are governed by nonlinear 

partial-differential equations in space and time. These 

partial-differential equations and associated boundary 

conditions form an initial boundary-value problem. In 

general it is hard to find exact or closed-form 

solutions for this class of problems. Consequently, 

one seeks approximate solutions of the original 

problem. 
The study of nonlinear vibration equations solution 

has been applied by many researchers and various 

methods of solution have been used. In recent years, 

much attention has been devoted to the new 

developed methods to construct an analytic solution 

of nonlinear vibration such as He’s Homotopy 

Perturbation Method (HPM) [1-5],Homotopy 

Analysis Method (HAM) [6-10], He’s Parameter-

Expanding Method [11,12],He’s Variational Iteration 

Method (VIM) [13-17] and He’s Energy Balance 

Method (EBM) [18-20] and etc. 
There are two classes of approximating solutions for 

initial boundary-value problems: numerical methods 

(e.g., finite differences, finite elements, and boundary 

elements) [21-23] and analytical methods [24-27]. 

Analytical methods can be divided into two 

categories: direct and discretization techniques. For 

weakly nonlinear systems, direct techniques are used. 

Discretization method used to discretized the partial 

differential equation into a set of nonlinear ordinary 
differential equation and then solved analytically in 

time domain. One of the most commonly used 

methods for discretization is the Galerkin procedure. 

Besides all advantages of numerical methods, due to 

convenience for parametric studies and accounting of 

the physics of the problems, an analytical solution 

appears more appealing than the numerical one. Also, 

analytical solutions give a reference frame for 

verification and validation of other numerical 

approaches. 

The main propose of this study is to obtain analytical 

expressions for geometrically nonlinear vibration of 
the buckled beams. With the Galerkin approach, 

governing nonlinear partial differential equation is 

reduced to a single nonlinear ordinary differential 

equation. The latter equation is solved analytically in 

time domain using HPM,VIM and PPM. 

 

2. THEORICAL FORMULATION 
       Consider a straight beam of length L, a cross-

section A, a mass per unit length m, moment of 

inertia I, and modulus of elasticity E, that subjected to 

an axial force of magnitude F as shown in figure 1. 
The equation of motion including the effects of mid-

plane stretching is given by [28,29]: 
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Where C is viscous damping coefficient. 

 
 

Figure 1. A schematic of a beam subjected to an axial 

load 

For convenience, the following non-dimensional 

variables are used: 
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is the radius of gyration of the 

cross-section. As a result Eq. (1) can be written as 

follows: 

                                                                                 (2)  

Assuming  ( , ) ( ) ( )W X t X t  where ( )X  is 

the first eigenmode of the beam [30] and applying the 

Galerkin method, the equation of motion is obtained 

as follows:
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Where dot denotes differentiation with respect to time 

and ,  and   are as follows: 
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Here prime denotes differentiation with respect to x. 

The Eq. (3) is the differential equation of motion 

governing the nonlinear vibration of buckled beam. 

The center of the beam subjected to the following 

initial conditions: 

 

(0) A  (0) 0                                               (7) 

3. Numerical Methods 

 

3-1. Fundamentals of the Homotopy Perturbation 

Method 

 

        To illustrate the basic ideas of this method, we 

consider the following equation [1-3]: 

 

A(u)− f (r) = 0,      r ∈Ω,                                          (8) 
 

with boundary condition 

, 0,
u

B u
n
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r                                           (9)  

where A is a general differential operator, B a 

boundary operator, f (r) a known analytical 

function and Γ is the boundary of the domain Ω. 

A can be divided into two parts which are L and N, 

where L is linear and N is nonlinear. 

Eq. (8) can therefore be rewritten as follows: 

L(u)+ N (u)− f (r )= 0 ,        r∈Ω,                          (10) 

Homotopy perturbation structure is shown as follows: 

                      

H(U, p) = (1 - p)[L(v) - L(u0)] + p[A(v) – f (r)] = 0,       

p   [0,1]  ,    r   Ω                                              (11) 

where 

v(r, p): Ω ×[0,1]→ℛ.                                              (12) 

In Eq. (11), p ∈  [0, 1] is an embedding parameter and 

U0 is the first approximation that satisfies the 

boundary condition. We can assume that the solution 
of Eq. (11) can be written as a power  series in p, as 

following: 
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and the best approximation for solution is 

0 1 2 3
1
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p
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                          (14) 

The above convergence is discussed in [1-3].  

3-2. The variational iterational Method 

          Consider the differential equation 

L  u + Nu = g (t) t                                             (15) 

Where L is a linear operator, N is a non-linear 

operator and g(t) is a known and Nonlineer analytical 

function. Ji Huan He has modified the above method 

into an iteration method[14]in the following way: 

1

0

u = u + ( Lu (x)+Nu (x)- g(x)) dx

t

n n n n 
     

(16) 

where   is a general Lagrange’s multipler, which 

can be identified optimally via the variational 

theory, and un is a restricted variation which means 

 u  =0 . 

It is obvious now that the main steps of He’s 

variational iteration method require first the 

determination of the Lagrangian multiplier   that 

will be identified optimally. Having determined the 

Lagrangian multiplier, the successive approximations 

1nu  ,n ≥ 0, of the solution u will be readily obtained 

upon using any selective function u0 .Consequently, 

the solution 
u = lim un ,               for (n → ∞) .                         (17) 

In other words, correction functional (16) will give 

several approximations, and therefore the 

exact solution is obtained at the limit of the resulting 

successive approximations. 

 

3-3.The  Parametrized Perturbation Method 

    The parameterized perturbation method was first 

proposed in 1999 in [11]. According to [11], an 

expanding parameter is introduced by a linear trans-

formation: 
 

                                                     (18) 

where x is the perturbation parameter, by substituting 

eq. (18) into an original equation in order to have no 

secular term in the equation; we can obtain the un-

known constant parameter b, then, the solution is 

expanded in the form: 

2 3

0 1 1 2 3

0

...,i

i

i

n         


              (19)                             

Here   is an artificial bookkeeping parameter. 

Unlike traditional perturbation methods, we keep 
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By considering three different type of variation for 

emissivity versus temperature (no-variation, linear 

variation and second power variation), three unlike 

ODEs are solved as: 

 

4( )
( ) 0

d b

d


  




  

                        (20)                   

                               

4 5

4 5 6

( )
( ) ( ) 0

( )
( ) ( ) ( ) 0

a a

a a a

d

d

d

d


    




        



   

    

By substituting transformation equation into these 

equations, Inserting   terms, rearranging  -terms, 

summation of solutions and subsequently using 

inverse transformation, the temperature distribution 

for different conditions will be obtained. All 
analytical expressions gained by PPM are in very 

good agreement with numerical results and can be 

used in many calculations related to industries. 

 
Approximation solution  solution via HPM  

 
Approximation solution  solution via PPM  

b  
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Approximation solution  solution via VIM 

Fig.1.The numerical results for  t when 0 2t   

with initial condition of Eq.(7) by means of 

HPM,PPM and VIM 

 

4. Comparison among HPM, VIM and PPM 

 

        It can be seen from this study, that: 

1. Comparison among HPM, VIM and PPM shows 

that although the results of these methods, HPM does 

not require specific algorithms and complex 

calculations, such as PPM or construction of 
correction functional using general Lagrange 

multipliers, such as VIM and is much easier and more 

convenient than PPM and VIM. 

 

2. HPM handles linear and nonlinear problems in a 

simple manner by deforming a difficult problem into 

a simple one. But in nonlinear problems, we 

encounter difficulties to calculate the so-called PPM 

's constant(b), when using PPM. Also, optimal 

identification of Lagrange multipliers via the 

variational theory can be difficult in VIM. 

 
3. Comparison among HPM, VIM and ADM shows 

that although the results of these methods,we have the 

similar answers for 0≤ t ≤ 2. (figure 1,2)

 

Table 1: Comparison among HPM ,PPM ,VIM for  t  

PPM VIM HPM t(s) 

1 1.005476 1 0 

0.903486 0.801212 0.802316 0.2 

0.507686 0.337299 0.340247 0.4 

0.005626 -0.16157 -0.16068 0.6 

-0.4074 -0.51171 -0.51412 0.8 

-0.60271 -0.61443 -0.6194 1 

-0.5513 -0.47724 -0.48139 1.2 

-0.3159 -0.19594 -0.1953 1.4 

-0.01242 0.102157 0.108204 1.6 

0.240408 0.309406 0.318686 1.8 

0.363113 0.369151 0.378462 2 

0.33626 0.287692 0.293153 2.2 

0.196375 0.120524 0.119539 2.4 

0.012993 -0.05787 -0.06471 2.6 

-0.1417 -0.18296 -0.19286 2.8 

-0.21867 -0.22063 -0.22998 3 

-0.20502 -0.17408 -0.1794 3.2 

-0.12196 -0.07538 -0.07486 3.4 

-0.01119 0.031361 0.037021 3.6 

0.083422 0.107236 0.11564 3.8 

0.131634 0.131433 0.139425 4 
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Fig2:The comparison of answers obtained by HPM,VIM,PPM 

 

5. Conclusion 

        In this letter, we have successfully developed 

HPM , PPM and VIM to obtain the analytical 

expression for the nonlinear deflection of Buckled 

beams. It is apparently seen that these methods are 

very powerful and efficient techniques for solving 

different kinds of problems arising in various fields 

of science and engineering and present a rapid 

convergence for the solutions. The solutions obtained 

show that the results of these methods are in 
agreement but HPM is an easy and convenient one. 
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