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Abstract: Clustering is a very well known technique in data mining, pattern recognition and image processing, used 
to group data according to shared characteristics or a degree of convergences. One of the most widely used 
clustering techniques is the k-means algorithm. Solutions obtained from this technique are dependent on the 
initialization of cluster centers (centroids). Whenever the initial centroids are closed to the representative one in each 
cluster, k-means algorithm gives better results. In this article I proposed a new method to initialize the clusters. The 
proposed method is based on the Principal Component Analysis (PCA). A comparison made between the 
conventional (random) and proposed method is performed. The new (proposed) method when applied to different 
data sets showed good results. 
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1. Introduction 

Clustering techniques have received attention 
in many areas including engineering, medicine, 
biology and data mining. The purpose of clustering is 
to group together data points, which are close to one 
another. The k-means algorithm [1] is one of the most 
widely used techniques for clustering. 

The k-means algorithm starts by initializing the 
K cluster centers. The input vectors (data points) are 
then allocated (assigned) to one of the existing clusters 
according to the square of the Euclidean distance from 
the clusters, choosing the closest data points. The 
mean (centroid) of each cluster is then computed so as 
to update the cluster center. This update occurs as a 
result of the change in the membership of each cluster. 
The processes of re-assigning the input vectors and the 
update of the cluster centers is repeated until no more 
change in the value of any of the cluster centers.  

The steps of the k-means algorithm are written 
below:- 
1. Initialization: choose K input vectors (data points) 

to initialize the clusters, 
2. Nearest-neighbor search: for each input vector, 

find the cluster center that is closest, and assign 
that input vector to the corresponding cluster, 

3. Mean update: update the cluster centers in each 
cluster using the mean (centroid) of the input 
vectors assigned to that cluster, 

4. Stopping rule: repeat steps 2 and 3 until no more 
change in the value of the means.  

However, it has been reported that solutions 
obtained from the k-means are dependent on the 
initialization of cluster centers [2]–[4]. 

There are two simple approaches to cluster 
center initialization: 1) Selecting the initial values 
randomly, 2) Choosing the first K samples of the data 
points. As an alternative, different sets of initial values 
are chosen (out of the data points) and the set, which 
is closest to optimal, is chosen. However, testing 
different initial sets is considered impracticable 
criteria, especially for large number of clusters [5]. 
Therefore, different methods have been proposed in 
literature [6]–[8]. 

In the following sections, in section 2 a new 
algorithm is proposed for cluster initialization. The 
proposed algorithm finds a set of medians extracted 
from a dimension with maximum variance to initialize 
clusters of the k-means. The method can give better 
results when applied to k-means. 

The rest of this paper presents the experimental 
results in section 3, then finally the conclusions in 
section 4. 
 
2. Proposed Algorithm   

The idea of the proposed method is based on 
Principal Component Analysis (PCA).  
Principal Component Analysis (PCA) is a powerful 
tool that has been applied in many application areas 
such as data mining, intrusion detection and image 
processing [9]. It is a widely used technique for 
dimension reduction.   

It is based on transforming a large number of 
variables (dimensions) into a smaller number of 
uncorrelated variables. This is done by finding a few 
orthogonal linear combinations of the original 
variables with the largest variance.  
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Given a data set with D variables, it is possible 
to construct a new set of p variables, p < D which are 
a linear transformation of the original dimensions 
[10]. The flow chart of original PCA is presented in 
Figure 1 [11]. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Flow chart of original PCA. 

 
 The first principal component of the transform 

is the linear combination of the original variables with 
maximum variance can keep the most characteristics 
of the sample points [12].  

The proposed method works as follows: 
1.  Perform PCA, 
2. Select the first Principal Component  (PC), 
3. Divide the dataset into k groups, 
4. Find the average of each group, 
5. Reconstruct the data for each group, 
6. Use the resulting k data points as initial 

centroids, 
7. Run the k-means algorithm with the initial 

centroids obtained from step 6. 
 

3. Experimental Results 
As discussed in [6] and [12] there is no general 

proof of convergence for the k-means clustering 
method. However, there exist some techniques for 
measuring clustering quality. One of these techniques 
is the use of the Sum of Square Error (SSE), 
representing distances between data points and their 
cluster centers. This technique has been suggested in 
[6] and [14].  

The technique allows two solutions be 
compared for a given data set, the smaller value of 
SSE, the better   solution.  

The proposed method has been applied to two 
set. The first data set is the well known Ruspini [14] 

data set, while the second set, containing data points in 
2, 4, and 8-dimensional formats, representing the well 
known Baboon image. Since no good method for 
initialization exists [15] and [16], we compare against 
the standard method for initialization: randomly 
choosing an initial starting points. Table 1 shows the 
initial results (initial SSE values) of the proposed 
method when applied to the first data set. The table 
shows that the proposed method works better than 
random initial centroids. These results are shown in 
Figure 2. 
 
Table 1: The SSE values for Ruspini data set. 

K Random Proposed Deviation 
(Proposed-Random) 

2 141771 89337 -52434 
4 37547 20698 -16849 
8 21392 20350 -1042 
12 18497 12012 -6485 
 

Figure 2: Graph that present SSE values in Table 1. 
  
Tables 2, 3, 4 and Figures 3,4, 5 are presenting 

initial results (initial SSE values) when applied on the 
second data sets with different dimensions, for both 
random and proposed methods. The tables and Figures 
show that the results obtained from the new algorithm 
are better in different dimensions (2D, 4D, 8D).  

As shown in Tables 1, 2, 3, 4 and Figures 2, 3, 
4, 5 there is a remarkable reduction in SSE values that 
leads to better solutions when k-mean algorithm is 
applied. 
 

Table 2: The SSE values for baboon data set (2D). 
K Random Proposed Deviation 

(Proposed-Random) 

2 1.36384e+007 9.39992e+006 -4.24E+06 
4 4.9146e+006 4.72002e+006 -1.95E+05 
6 5.14676e+006 3.50381e+006 -1.64E+06 

8 4.02572e+006 3.00218e+006 -1.02E+06 
12 2.881e+006 2.53566e+006 -3.45E+05 

 
 

Rebuild Result Image 

Find Principal Component  

Find Eigen values and Eigenvectors 
MMatrix 

Build Covariance Matrix 
MMatrix 

Normalization 

Build Raster-like Matrix 
MMatrix 
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Figure 3: Graph that present SSE values in table 2.  
 

Table 3: The SSE values for baboon data set (4D). 
K Random Proposed Deviation 

(Proposed-Random) 

2 1.07713e+007 9.62684e+006 -1.14E+06 
4 5.81384e+006 5.02862e+006 -7.85E+05 
6 4.33441e+006 3.89765e+006 -4.37E+05 

8 4.02572e+006 3.41302e+006 -6.13E+05 
12 5.27143e+006 2.97799e+006 -2.29E+06 

 

 
Figure 4: Graph that present SSE values in table 3. 
 

Table 4: The SSE values for baboon data set (8D). 
K Random Proposed Deviation 

(Proposed-Random) 
2 1.61556e+007 1.4124e+007 -2.03E+06 
4 1.12798e+007 1.045e+007 -8.30E+05 

6 240723 19211 -221512 
8 9.2757e+006 9.21158e+006 -6.41E+04 
12 5.27143e+006 2.91441e+006 -2.36E+06 

 

 
Figure 5: Graph that present SSE values in table 4. 

 
4.  Conclusions 

In this paper we propose a new algorithm to 
initialize the clusters of the k-means algorithm. Two 
data sets were used, with different number of clusters 
and different dimensions. In all experiments, the 
proposed method gave best results in all cases, over 
randomly initialization methods, getting better quality 
results when applied to k-means algorithm. 
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