
 Journal of American Science 2013;9(12) http://www.jofamericanscience.org

381

Investigation of Software Defects Prediction Based on Classifiers (NB, SVM, KNN and Decision Tree)

Amjad Hudaib, Fawaz AL zaghoul, Jaber AL Widian

IS Department, Jordan University, Jordan

j.alwedyan@arabou.edu.sa

Abstract: Constructing predictive model process can be considered as one important approach to improve software

quality and testing efficiency. Testing and maintenance phases are the main factors which have to be taken when the

cost estimation is carried out for the software product. Thus, accuracy of defects prediction will reduce the efforts in

the testing process and give estimation for the product's required maintenance. This paper main goal is to investigate

the potential use of automated data mining techniques in software defect problem. The results of this paper showed

that the performance of the compared algorithms have a potential results against the software defects problem.

Moreover, Naïve Bayesian method (NB), Support Vector Machine (SVM), Decision Trees, and K-nearest Neighbor

(KNN) have been investigated on NASA data set. The bases of our comparison are the most popular evaluation

measures for the classification techniques (F1, Precision, and Recall). The average of the three measures obtained

against false data set indicated that the NB classifier outperformed the SVM, KNN and Decision Tree algorithms.

[Amjad Hudaib, Fawaz AL zaghoul, Jaber AL Widian. Investigation of Software Defects Prediction Based on

Classifiers (NB, SVM, KNN and Decision Tree). J Am Sci 2013;9(12):381-386]. (ISSN: 1545-1003).

http://www.jofamericanscience.org. 52

Keyword: Software defect; data mining; classification

1. Introduction

As any other product built by humans software

is subjected to defect, it is never the developer

intention to build defected software but it is the

nature of defects to creep into software. Predicting

which parts of software are likely to be defected can

reduce effort. Developers store large amounts of

information about software and its attributes, such

information can be used to build useful understanding

and prediction of defects.

Testing is the process of executing programs

with the intention of finding defects. A software

defect is an error, flaw, mistake, failure, or fault in a

computer program or system that produces incorrect

or unexpected results, or causes it to behave in

unintended way (Kaur and Pallavi, 2013). While

keeping in mind the required quality level, software

developers are always in pursuit of ways to reduce

cost and time, one way of doing so is by fasting up

testing throughout defect prediction.

In defect prediction process we guess which

modules in the software are the most possible to be

defected. It can speed up testing and improve its

efficiency. Software defect prediction can be done by

inspecting into software attributes and formalizing

defect prediction models from these attributes. Such

prediction models can be strongly formalized when

enough attributes data is available in software

repository to extract them (Azeem and Usmani, 2011;

Saba and Altameem 2013).

The data mining techniques are used for

software defects prediction (Kaur and Pallavi, 2013;

Okutan and Yildiz, 2012; Lessmann, 2008; Azeem

and Usmani, 2011, Saba et al., 2012). Data mining is

process of observing hidden relationship between

data and analyzing data from different perspective.

This paper is organized as follows: section 2

discusses the main classification techniques that will

be used. The related works will be discussed in

section 3. Section 4 clarifies the dataset and the

experimental results. Conclusion and future works

are given in section 5.

2. Approaches to classification

This section covers four existing approaches to

classification: SVM, Decision Tree, KNN and NB

algorithms. SVM is one of the effective algorithms

that perform classification by constructing an N-

dimensional hyperplane that optimally separates the

data into two categories (Joachims, 1999, Rehman

and Saba, 2012). KNN is a statistical classification

approach, which has been intensively studied in

pattern recognition over four decades. KNN has been

successfully applied in many fields, and showed

promising results if compared with other statistical

approaches such as Baysian based Network (Yang,

1999; Rahim et al., 2011; Saba et al., 2011). Decision

Tree approach starts by selecting an attribute as a root

node, and then it makes a branch for each possible

level of that attribute. This will split the training

instances into subsets, one for each possible value of

the attribute. The same process will be repeated until

all instances that fall in one branch have the same

classification or the remaining instances cannot be

split any further (Quinlan, 1993). NB which is a

mailto:j.alwedyan@arabou.edu.sa
http://www.jofamericanscience.org/

 Journal of American Science 2013;9(12) http://www.jofamericanscience.org

382

simple probabilistic classifier based on Baye's

theorem.

The next four subsections describe the general

nature, process for classifier training, advantages and

disadvantages, of four learning methods that we

considered.

2.1 K-nearest Neighbor (KNN)

KNN (Yang, 1999) is a statistical classification

approach, which has been intensively studied in

pattern recognition over four decades. KNN has been

successfully applied to software defects, i.e.

(Lessmann, 2008; Saba and Rehman, 2012), and

showed promising results if compared with other

statistical approaches such as Baysian based

Network.

The KNN algorithm is quite simple: Given

training and testing projects, the algorithm finds the

k-nearest neighbors among the training projects, and

uses the categories of the k-neighbors to weight the

category of the test project. The similarity scores of

each neighbor project to the test project are used as a

weight of the categories of the neighbouring project.

If several k-nearest-neighbors share a category, then

the pre-neighbor weights of that category are added

together, and the resulting weighted sum is used as

the likelihood score of that category with respect to

the test project. By sorting the scores of the

candidates’ categories, a ranked list is obtained for

the test project. See (Yang and Liu, 1999; Yang,

1999) for further details.

2.2 Naïve Bayesian (NB)

The NB (Thabtah et al., 2009; Hadi et al.,

2008b) is a simple probabilistic classifier based on

applying Baye's theorem (Duda and Hart, 1973;

Elarbi-Boudihir et al., 2011), and its predictive, easy

and language independent method. When the NB

classifier is applied on the software defects problem

we use equation 1.

p(project)

)class(projectp(class).p
project)p(class

 (1)

Where:

P (class|project): The probability that a

given project D belongs to a given class C. P

(project): The probability of a project, we can notice

that p(project) is a constance divider to every

calculation, so we can ignore it. P (class): The

probability of a class, we can compute it from the

number of projects that belong to a category divided

by number of projects in all categories.

P(project|class) represents the probability of project

given class, and projects can be modelled as sets of

words, thus the p(project|class) can be written like:

P(attribute|class) = (nc + mp) /(n + m) (2)

Where:

n = the number of training examples for which class

= classj

nc = number of examples for which class = classj and

attribute = attributei

p = attribute priori estimate for P (attribute|class)

m = the equivalent sample size.

NB has been successfully applied to software

defects problem and showed good results if compared

with other software defects techniques (Lessmann,

2008).

2.3 Decision Trees

The most popular Decision Tree learning

program is C4.5 (Quinlan, 1993). This approach

starts by selecting the best attribute as a root node,

where each branch of the root corresponds to one of

its possible value. The process is then repeated on

each branch until no examples are left in the training

data set. To decide which attribute to be selected at

each step, IG (information gain) (Quinlan, 1986) is

used. The attribute with the highest gain is chosen as

the node. Informally, IG measures how well an

attribute separates the training set with respect to

class labels. Therefore, the higher the gain, the better

separation resulting from classifying training

examples on the associated attribute. For a formal

concept, equations for computing information gain

and an illustrative example see (Mitchell, 1997).

(Lessmann, 2008) applied C4.5 and other

classification methods in NASA data sets, and the

results showed that the C4.5 produced competitive

results if compared with other methods such as KNN,

SVM, and Rocchio (Lessmann, 2008).

2.4 Support Vector Machine (SVM)

SVM was introduced by (Vapnik, 1995) as a

class of supervised machine learning techniques. It is

based on the principle of structural risk minimisation.

In linear classification, SVM creates a hyper plane

that separates the data into two sets with the

maximum-margin. A hyper plane with the maximum-

margin has the distances from the hyper plane to

points when the two sides are equal. Mathematically,

SVMs learn the sign function

)sign()(bwxxf
, where w is a weighted

vector in
nR . SVMs find the hyper plane

bwxy
by separating the space

nR into two

half-spaces with the maximum-margin. Linear

SVMs can be generalised for non-linear problems. To

do so, the data is mapped into another space H and

we perform the linear SVM algorithm over this new

space. Recently SVM has been successfully used on

software defects (Lessmann, 2008) and they derived

better results than other machine learning techniques

such as NB, Decision Trees, and KNN with reference

to accuracy.

 Journal of American Science 2013;9(12) http://www.jofamericanscience.org

383

3. literature review

In (Kaur and Pallavi, 2013), they discussed how

three different data mining techniques (clustering,

classification, and association) can be used in

software defect production, they delimited those

techniques arguing that the three different techniques

have given different results on different data sets and

concluding that a certain techniques can perform

differently under different data sets.

In (Okutan and Yildiz, 2012), they surveyed

some defect prediction technique raising main

research question in the field such as, how to assess a

prediction technique or, which repositories and

datasets are best to mind. The authors also argued

that software prediction model only works well when

enough data is available in software repository within

the organization to initially feed the model. And their

most important finding is that there is no single data

mining technique that is best or suitable for all type

of software projects, In order to select a better data

mining algorithm, domain expert must consider the

various factors like problem domain, type of data

sets, nature of project (Rehman and Saba, 2011).

In (Lessmann, 2008), they used Bayesian

networks to study the relation between software

metrics and defect proneness. It is important to select

a related and representative set of metrics in such a

study as many software metrics are available. The

authors selected a set of good important metrics and

tried to find which of them are probably most related

to the existence of errors in software. After mining

into nine different data sets they concluded with good

certainty that some of the related metrics are the

response for class (RFC) and line of code (LOC), and

some of the unrelated metrics are the number of

children (NOC) and the depth of inheritance tree

(DIT).

4. data set and experimental results

4.1 Dataset

 The data used in our experiments are The

software defects data sets (NASA, 2004), the data set

consist of 498 projects that belongs to 2 categories,

the categories are false (no defects) and true

(defects), Table 1 represent the number of projects

for each category.

Table 1: Number of projects per Category

Category Name Number of projects

False 449

True 49

Total 498

 For each project there are 22 attributes

divided to 5 different lines of code measure, 3

McCabe metrics, 4 base Halstead measures, 8 derived

Halstead measures, a branch-count, and 1 goal field)

as shown in table 2.

Table 2: Description of all attributes (NASA,2004)

Name of attribute description

loc numeric % McCabe's line count of code

v(g) numeric % McCabe "cyclomatic complexity"

ev(g) numeric % McCabe "essential complexity"

iv(g) numeric % McCabe "design complexity"

n numeric % Halstead total operators + operands

v numeric % Halstead "volume"

l numeric % Halstead "program length"

d numeric % Halstead "difficulty"

i numeric % Halstead "intelligence"

e numeric % Halstead "effort"

b numeric % Halstead

t numeric % Halstead's time estimator

lOCode numeric % Halstead's line count

lOComment numeric % Halstead's count of lines of comments

lOBlank numeric % Halstead's count of blank lines

lOCodeAndComment numeric

uniq_Op numeric % unique operators

uniq_Opnd numeric % unique operands

total_Op numeric % total operators

total_Opnd numeric % total operands

branchCount numeric % of the flow graph

defects {false,true} % module has/has not one or more. reported defects

 Journal of American Science 2013;9(12) http://www.jofamericanscience.org

384

4.2 Experimental Results

We used three evaluation measures (Recall,

Precision, and F1) as the bases of our comparison,

where F1 is computed based on the following

equation:

ecisioncall

callecision
F

PrRe

Re*Pr*2
1

 (1)

Precision and recall are widely used evaluation

measures in IR and ML, where according to Table 2

)(
Pr

ba

a
ecision

 (2)

)(
Re

ca

a
call

 (3)

Table 2 Cases possible sets based on a classification

in ML

Iteration

Predicated as

actual Class

Predicted as

other classes

Actual

Class A c

Other

Classes B d

Table 3 gives the F1, Recall, and Precision

results generated by the four classifiers (NB, SVM,

Decision Tree and KNN) against software defects

data sets where in each data set using ten-fold cross-

validation.

Table 3: F1, Recall, and Precision results generated

by four classifiers (NB, SVM, Decision Tree, and

KNN)

Name of

algorithm
measure True False Average

Naïve

Bayes

Precision 0.286 0.925 0.862

Recall 0.327 0.911 0.853

F1 0.305 0.918 0.858

SVM

Precision 0 0.901 0.812

Recall 0 0.993 0.896

F1 0 0.945 0.852

Decision

Tree

Precision 0.176 0.904 0.833

Recall 0.061 0.969 0.88

F1 0.091 0.935 0.852

KNN

Precision 0.186 0.91 0.839

Recall 0.163 0.922 0.847

F1 0.174 0.916 0.843

Cross validation is a known evaluation

method in data mining, where the training data is

divided randomly into n blocks, each block is held

out once, and the classifier is trained on the

remaining n-1 blocks; then its error rate is evaluated

on the holdout block. Therefore, the learning

procedure is executed n times on slightly different

training data sets. All the experiments were

conducted using the Weka open source software

(Weka software, 2001).

After analyzing Table 3 we found that the

SVM Classifier outperformed NB, Decision Tree and

KNN on false data set with regards to F1 results as

shown in figure 1.

Figure 1: F1 measure in false data set for KNN,

Decision Tree, SVM, and Naïve Bayes.

Precision results obtain that the NB

outperformed SVM, Decision Tree and KNN on

False data set as shown in figure 2. Also Recall

results obtain that the SVM outperformed NB,

Decision Tree and KNN on false data set as shown in

figure 3.

Figure 2: Precision measure in false data set for

KNN, Decision Tree, SVM, and Naïve Bayes.

Figure 3: Recall measure in true data set for KNN,

Decision Tree, SVM, and Naïve Bayes.

The average of three measures obtained

against false data set indicated that the NB classifier

outperformed all algorithms. But all classifiers

0.9

0.95

F1(false)

F1(false)

0.88
0.9
0.92
0.94

Precision(false)

Precision(fal
se)

0.8

1

Recall(false)

Recall(false
)

 Journal of American Science 2013;9(12) http://www.jofamericanscience.org

385

performed poor in true data set, because the

distribution of the data sets not balanced i.e. 90%

false data set and 10% for true data set as shown in

figures 4, 5, and 6.

Figure 4: F1 measure in true data set for KNN,

Decision Tree, SVM, and Naïve Bayes.

Figure 5: Recall measure in true data set for KNN,

Decision Tree, SVM, and Naïve Bayes.

Figure 6: Precision measure in true data set for KNN,

Decision Tree, SVM, and Naïve Bayes

Finally, all classifiers perform excellent to

detecting defects on the software. This excellent

result may indicate that data mining can be

considered as a tool to determine if the software has

defects or not as shown in figures 7, 8, and 9.

Figure 7: F1 average for KNN, Decision Tree, SVM,

and Naïve Bayes.

Figure 8: Recall average for KNN, Decision Tree,

SVM, and Naïve Bayes.

Figure 9: Precision average for KNN, Decision Tree,

SVM, and Naïve Bayes

Conclusion and future works

In this paper we discussed the problem of

software defects prediction and we used classification

techniques to solve this problem. We used the NB

algorithm which is based on probabilistic framework,

SVM algorithm, K-nearest Neighbor (KNN) and

Decision Trees to handle our problem.

Performance of All classifiers was excellent to

detecting defects on the software. This performance

may indicate that data mining can be considered as a

tool to determine if the software has defects or not.

The average of three measures obtained against

NASA data set indicated that the NB algorithm

outperformed the others.

In near future, we intend to propose a new

multi-label classification approach based on

association rule for the software defects problem and

enhance one of the classification algorithms.

References

1. Azeem, N. and Usmani S.(2011) analysis of data

mining based software defect prediction

techniques, global journal of computer science and

technology, volume 11(16), 2011.

2. A. Rehman and T. Saba (2012). “Evaluation of

Artificial Intelligent Techniques to Secure

Information in Enterprises”. Artificial Intelligence

Review, DOI. 10.1007/s10462-012-9372-9.

3. Duda R. and Hart P. (1973). Pattern classification

and scene analysis. John Wiley & son.

0

0.2

0.4

N
aï

ve
 …

SV
M

D
ec

is
i…

K
N

N

F1 (True)

F1 (True)

0

0.2

0.4

N
aï
…

SV
M

D
ec

i…

K
N

N

Recall(True)

Recall(Tru
e)

0

0.2

0.4

N
aï

v…

SV
M

D
ec

i…

K
N

N

Precision(True)

Precision(
True)

0.82

0.84

0.86

N
aï

v…

SV
M

D
ec

i…

K
N

N

Average (F1)

Average
(F1)

0.8

0.9

Average (Recall)

Average
(Recall)

0.7
0.8
0.9

Average
(Precision)

Average
(Precision
)

 Journal of American Science 2013;9(12) http://www.jofamericanscience.org

386

4. Elarbi-Boudihir, M. A. Rehman and T.Saba

(2011). “Video Motion Perception Using

Operation Gabor Filter”. International Journal of

Physical Sciences, Vol. 6(12), pp. 2799-2806.

5. Hadi W., Thabtah F., ALHawari S., Ababneh J.

(2008) Naive Bayesian and K-Nearest Neighbour

to Categorize Arabic Text Data. Proceedings of the

European Simulation and Modelling Conference.

Le Havre, France,(pp. 196-200), 2008.

6. Saba T, Al-Zaharani S, Rehman A. Expert System

for Offline Clinical Guidelines and Treatment Life

Sci Journal 2012;vol. 9(4):2639-2658

7. Saba, T. Altameem, A. (2013) Analysis of vision

based systems to detect real time goal events in

soccer videos, Applied Artificial Intelligence

27(7), 656-667

8. Joachims T. (1999). Transductive Inference for

Text Classification using Support Vector

Machines. Proceedings of the International

Conference on Machine Learning (ICML), (pp.

200-209).

9. Kaur, P. and Pallavi. (2013) Data mining

techniques for software defect prediction,

international journal of software and web sciences

(IJSWS). 12-347.

10. Rehman, A. and Saba, T. (2011). “Document

Skew Estimation and Correction: Analysis of

Techniques, Common problems and Possible

Solutions” Applied Artificial Intelligence, Vol.

25(9), pp. 769-787.

11. Lessmann, S. (2008) Benchmarking Classification

Models for Software Defect Prediction: A

Proposed Framework and Novel Findings. IEEE

transactions on software engineering vol 34, NO 4.

12. Mitchell M. (1997). Machine Learning, chapter

IV, Artificial Neural Networks, (pp. 81-127).

WCB/McGraw-Hill, New York, New York.

13. NASA, CM1/software defect prediction,

http://promise.site.uottawa.ca/SERepository/datase

ts/cm1.arff, 2 December 2004.

14. T. Saba, A. Rehman (2012). Machine Learning

and Script Recognition, Lambert Academic

publisher, pp:99-117.

15. Okutan, A. and Yildiz O. (2012) software defect

prediction using Bayesian networks, Springer

science, 01 august 2012.

16. Quinlan J. (1986). Induction of decision trees.

Machine Learning, 1(1986): 81 – 106.

17. Quinlan, J. (1993) "C4.5: Programs for machine

learning. San Mateo, CA: Morgan Kaufmann.

18. Thabtah F., Eljinini M., Zamzeer M., Hadi W.

(2009) Naïve Bayesian based on Chi Square to

Categorize Arabic Data. In proceedings of The

11th International Business Information

Management Association Conference (IBIMA)

Conference on Innovation and Knowledge

Management in Twin Track Economies, Cairo,

Egypt 4 - 6 January. (pp. 930-935).

19. Vapnik V. (1995). The Nature of Statistical

Learning Theory, chapter 5. Springer-Verlag, New

York.

20. WEKA. Data Mining Software in Java:

http://www.cs.waikato.ac.nz/ml/weka, 2001.

21. Yang Y. and Liu X. (1999). A re-examination of

text categorization methods, Proceedings of the

ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR'99),

(pp. 42-49).

22. Yang, Y., and Pedersen, J.O. (1997) "A

comparative study on feature selection in text

categorization," In Proc. of Int'l Conference on

Machine Learning (ICML), pp. 412-420.

23. MSM Rahim, A Rehman, MFA Jabal, T Saba

(2011) Close Spanning Tree (CST) Approach for

Error Detection and Correction for 2D CAD

Drawing, International Journal of Academic

Research, Vol. 3(4), pp. 525-533

24. T. Saba, A. Rehman, M. Elarbi-Boudihir (2011).

Methods and strategies on off-line cursive touched

characters segmentation: a directional review,

Artificial Intelligence Review, DOI

10.1007/s10462-011-9271-5.pp:45-54.

11/23/2013

http://promise.site.uottawa.ca/SERepository/datasets/cm1.arff
http://promise.site.uottawa.ca/SERepository/datasets/cm1.arff
http://nyc.lti.cs.cmu.edu/yiming/Publications/sigir99.ps.gz
http://nyc.lti.cs.cmu.edu/yiming/Publications/sigir99.ps.gz

