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Abstract: Constructing predictive model process can be considered as one important approach to improve software 

quality and testing efficiency. Testing and maintenance phases are the main factors which have to be taken when the 

cost estimation is carried out for the software product. Thus, accuracy of defects prediction will reduce the efforts in 

the testing process and give estimation for the product's required maintenance. This paper main goal is to investigate 

the potential use of automated data mining techniques in software defect problem. The results of this paper showed 

that the performance of the compared algorithms have a potential results against the software defects problem. 

Moreover, Naïve Bayesian method (NB), Support Vector Machine (SVM), Decision Trees, and K-nearest Neighbor 

(KNN) have been investigated on NASA data set. The bases of our comparison are the most popular evaluation 

measures for the classification techniques (F1, Precision, and Recall). The average of the three measures obtained 

against false data set indicated that the NB classifier outperformed the SVM, KNN and Decision Tree algorithms. 
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1. Introduction 

As any other product built by humans software 

is subjected to defect, it is never the developer 

intention to build defected software but it is the 

nature of defects to creep into software. Predicting 

which parts of software are likely to be defected can 

reduce effort. Developers store large amounts of 

information about software and its attributes, such 

information can be used to build useful understanding 

and prediction of defects. 

Testing is the process of executing programs 

with the intention of finding defects. A software 

defect is an error, flaw, mistake, failure, or fault in a 

computer program or system that produces incorrect 

or unexpected results, or causes it to behave in 

unintended way (Kaur and Pallavi, 2013). While 

keeping in mind the required quality level, software 

developers are always in pursuit of ways to reduce 

cost and time, one way of doing so is by fasting up 

testing throughout defect prediction.  

In defect prediction process we guess which 

modules in the software are the most possible to be 

defected. It can speed up testing and improve its 

efficiency. Software defect prediction can be done by 

inspecting into software attributes and formalizing 

defect prediction models from these attributes. Such 

prediction models can be strongly formalized when 

enough attributes data is available in software 

repository to extract them (Azeem and Usmani, 2011; 

Saba and Altameem 2013). 

The data mining techniques are used for 

software defects prediction (Kaur and Pallavi, 2013; 

Okutan and Yildiz, 2012; Lessmann, 2008; Azeem 

and Usmani, 2011, Saba et al., 2012). Data mining is 

process of observing hidden relationship between 

data and analyzing data from different perspective. 

This paper is organized as follows: section 2 

discusses the main classification techniques that will 

be used. The related works will be discussed in 

section 3. Section 4 clarifies the dataset and the 

experimental results. Conclusion and future works 

are given in section 5.   

 

2. Approaches to classification 

This section covers four existing approaches to 

classification: SVM, Decision Tree, KNN and NB 

algorithms. SVM is one of the effective algorithms 

that perform classification by constructing an N-

dimensional hyperplane that optimally separates the 

data into two categories (Joachims, 1999, Rehman 

and Saba, 2012). KNN is a statistical classification 

approach, which has been intensively studied in 

pattern recognition over four decades. KNN has been 

successfully applied in many fields, and showed 

promising results if compared with other statistical 

approaches such as Baysian based Network (Yang, 

1999; Rahim et al., 2011; Saba et al., 2011). Decision 

Tree approach starts by selecting an attribute as a root 

node, and then it makes a branch for each possible 

level of that attribute. This will split the training 

instances into subsets, one for each possible value of 

the attribute. The same process will be repeated until 

all instances that fall in one branch have the same 

classification or the remaining instances cannot be 

split any further (Quinlan, 1993). NB which is a 
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simple probabilistic classifier based on Baye's 

theorem.  

The next four subsections describe the general 

nature, process for classifier training, advantages and 

disadvantages, of four learning methods that we 

considered. 

2.1 K-nearest Neighbor (KNN) 

KNN (Yang, 1999) is a statistical classification 

approach, which has been intensively studied in 

pattern recognition over four decades. KNN has been 

successfully applied to software defects, i.e. 

(Lessmann, 2008; Saba and Rehman, 2012), and 

showed promising results if compared with other 

statistical approaches such as Baysian based 

Network. 

The KNN algorithm is quite simple: Given 

training and testing projects, the algorithm finds the 

k-nearest neighbors among the training projects, and 

uses the categories of the k-neighbors to weight the 

category of the test project. The similarity scores of 

each neighbor project to the test project are used as a 

weight of the categories of the neighbouring project. 

If several k-nearest-neighbors share a category, then 

the pre-neighbor weights of that category are added 

together, and the resulting weighted sum is used as 

the likelihood score of that category with respect to 

the test project. By sorting the scores of the 

candidates’ categories, a ranked list is obtained for 

the test project. See (Yang and Liu, 1999; Yang, 

1999) for further details. 

2.2 Naïve Bayesian (NB) 

The NB (Thabtah et al., 2009; Hadi et al., 

2008b) is a simple probabilistic classifier based on 

applying Baye's theorem (Duda and Hart, 1973; 

Elarbi-Boudihir et al., 2011), and its predictive, easy 

and language independent method. When the NB 

classifier is applied on the software defects problem 

we use equation 1. 

p(project)

)class(projectp(class).p
project)p(class 

  (1) 

Where: 

P (class|project): The probability that a 

given project D belongs to a given class C. P 

(project): The probability of a project, we can notice 

that p(project) is a constance divider to every 

calculation, so we can ignore it. P (class): The 

probability of a class, we can compute it from the 

number of projects that belong to a category divided 

by number of projects in all categories. 

P(project|class) represents the probability of project 

given class, and projects can be modelled as sets of 

words, thus the p(project|class) can be written like: 

P(attribute|class) = (nc + mp) /(n + m)     (2) 

Where: 

n = the number of training examples for which class 

= classj 

nc = number of examples for which class = classj and 

attribute = attributei 

p = attribute priori estimate for P (attribute|class) 

m = the equivalent sample size. 

NB has been successfully applied to software 

defects problem and showed good results if compared 

with other software defects techniques (Lessmann, 

2008).  

2.3 Decision Trees 

The most popular Decision Tree learning 

program is C4.5 (Quinlan, 1993). This approach 

starts by selecting the best attribute as a root node, 

where each branch of the root corresponds to one of 

its possible value. The process is then repeated on 

each branch until no examples are left in the training 

data set. To decide which attribute to be selected at 

each step, IG (information gain) (Quinlan, 1986) is 

used. The attribute with the highest gain is chosen as 

the node. Informally, IG measures how well an 

attribute separates the training set with respect to 

class labels. Therefore, the higher the gain, the better 

separation resulting from classifying training 

examples on the associated attribute. For a formal 

concept, equations for computing information gain 

and an illustrative example see (Mitchell, 1997). 

(Lessmann, 2008) applied C4.5 and other 

classification methods in NASA data sets, and the 

results showed that the C4.5 produced competitive 

results if compared with other methods such as KNN, 

SVM, and Rocchio (Lessmann, 2008).  

2.4 Support Vector Machine (SVM) 

SVM was introduced by (Vapnik, 1995) as a 

class of supervised machine learning techniques.  It is 

based on the principle of structural risk minimisation. 

In linear classification, SVM creates a hyper plane 

that separates the data into two sets with the 

maximum-margin. A hyper plane with the maximum-

margin has the distances from the hyper plane to 

points when the two sides are equal. Mathematically, 

SVMs learn the sign function 

)sign()( bwxxf 
, where w is a weighted 

vector in 
nR . SVMs find the hyper plane 

bwxy 
by separating the space 

nR  into two 

half-spaces with the maximum-margin.  Linear 

SVMs can be generalised for non-linear problems. To 

do so, the data is mapped into another space H  and 

we perform the linear SVM algorithm over this new 

space. Recently SVM has been successfully used on 

software defects (Lessmann, 2008) and they derived 

better results than other machine learning techniques 

such as NB, Decision Trees, and KNN with reference 

to accuracy.  
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3. literature review 

In (Kaur and Pallavi, 2013), they discussed how 

three different data mining techniques (clustering, 

classification, and association) can be used in 

software defect production, they delimited those 

techniques arguing that the three different techniques 

have given different results on different data sets and 

concluding that a certain techniques can perform 

differently under different data sets.  

In (Okutan and Yildiz, 2012), they surveyed 

some defect prediction technique raising main 

research question in the field such as, how to assess a 

prediction technique or, which repositories and 

datasets are best to mind. The authors also argued 

that software prediction model only works well when 

enough data is available in software repository within 

the organization to initially feed the model. And their 

most important finding is that there is no single data 

mining technique that is best or suitable for all type 

of software projects, In order to select a better data 

mining algorithm, domain expert must consider the 

various factors like problem domain, type of data 

sets, nature of project (Rehman and Saba, 2011). 

In (Lessmann, 2008), they used Bayesian 

networks to study the relation between software 

metrics and defect proneness. It is important to select 

a related and representative set of metrics in such a 

study as many software metrics are available. The 

authors selected a set of good important metrics and 

tried to find which of them are probably most related 

to the existence of errors in software. After mining 

into nine different data sets they concluded with good 

certainty that some of the related metrics are the 

response for class (RFC) and line of code (LOC), and 

some of the unrelated metrics are the number of 

children (NOC) and the depth of inheritance tree 

(DIT).  

4. data set and experimental results 

4.1 Dataset 

 The data used in our experiments are The 

software defects  data sets (NASA, 2004), the data set 

consist of 498 projects that belongs to 2 categories, 

the categories are false (no defects) and true 

(defects), Table 1 represent the number of projects 

for each category. 

 

Table 1: Number of projects per Category 

Category Name Number of projects 

False 449 

True 49 

Total 498 

 

 For each project there are 22 attributes  

divided to 5 different lines of code measure, 3 

McCabe metrics, 4 base Halstead measures, 8 derived  

Halstead measures, a branch-count, and 1 goal field) 

as shown in table 2.  

Table 2: Description of all attributes (NASA,2004) 

Name of attribute description 

loc numeric % McCabe's line count of code 

v(g) numeric % McCabe "cyclomatic complexity" 

ev(g) numeric % McCabe "essential complexity" 

iv(g) numeric % McCabe "design complexity" 

n numeric % Halstead total operators + operands 

v numeric % Halstead "volume" 

l numeric % Halstead "program length" 

d numeric % Halstead "difficulty" 

i numeric % Halstead "intelligence" 

e numeric % Halstead "effort" 

b numeric % Halstead 

t numeric % Halstead's time estimator 

lOCode numeric % Halstead's line count 

lOComment numeric % Halstead's count of lines of comments 

lOBlank numeric % Halstead's count of blank lines 

lOCodeAndComment numeric 

uniq_Op numeric % unique operators 

uniq_Opnd numeric % unique operands 

total_Op         numeric % total operators 

total_Opnd numeric % total operands 

branchCount numeric % of the flow graph 

defects {false,true} % module has/has not one or more. reported defects 
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4.2 Experimental Results 

We used three evaluation measures (Recall, 

Precision, and F1) as the bases of our comparison, 

where F1 is computed based on the following 

equation:  

ecisioncall

callecision
F

PrRe

Re*Pr*2
1




      (1)  

Precision and recall are widely used evaluation 

measures in IR and ML, where according to Table 2  

)(
Pr

ba

a
ecision




    (2) 

)(
Re

ca

a
call




          (3) 

 

Table 2 Cases possible sets based on a classification 

in ML 

Iteration 

Predicated as 

actual Class 

Predicted as 

other classes 

Actual 

Class A c 

Other 

Classes B d 

 

Table 3 gives the F1, Recall, and Precision 

results generated by the four classifiers (NB, SVM, 

Decision Tree and KNN) against software defects 

data sets where in each data set using ten-fold cross-

validation.  

 

Table 3: F1, Recall, and Precision results generated 

by four classifiers (NB, SVM, Decision Tree, and 

KNN) 

Name of 

algorithm 
measure True False Average 

Naïve 

Bayes 

Precision 0.286 0.925 0.862 

Recall 0.327 0.911 0.853 

F1 0.305 0.918 0.858 

SVM 

Precision 0 0.901 0.812 

Recall 0 0.993 0.896 

F1 0 0.945 0.852 

Decision 

Tree 

Precision 0.176 0.904 0.833 

Recall 0.061 0.969 0.88 

F1 0.091 0.935 0.852 

KNN 

Precision 0.186 0.91 0.839 

Recall 0.163 0.922 0.847 

F1 0.174 0.916 0.843 

 

Cross validation is a known evaluation 

method in data mining, where the training data is 

divided randomly into n blocks, each block is held 

out once, and the classifier is trained on the 

remaining n-1 blocks; then its error rate is evaluated 

on the holdout block. Therefore, the learning 

procedure is executed n times on slightly different 

training data sets. All the experiments were 

conducted using the Weka open source software 

(Weka software, 2001). 

After analyzing Table 3 we found that the 

SVM Classifier outperformed NB, Decision Tree and 

KNN on false data set with regards to F1 results as 

shown in figure 1. 

 

 
Figure 1:  F1 measure in false data set for KNN, 

Decision Tree, SVM, and Naïve Bayes. 

 

Precision results obtain that the NB 

outperformed SVM, Decision Tree and KNN on 

False data set as shown in figure 2. Also Recall 

results obtain that the SVM outperformed NB, 

Decision Tree and KNN on false data set as shown in 

figure 3. 

 

 
Figure 2: Precision measure in false data set for 

KNN, Decision Tree, SVM, and Naïve Bayes. 

 

 
Figure 3: Recall measure in true data set for KNN, 

Decision Tree, SVM, and Naïve Bayes. 

 

The average of three measures obtained 

against false data set indicated that the NB classifier 

outperformed all algorithms. But all classifiers 

0.9 

0.95 

F1(false) 

F1(false) 

0.88 
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0.92 
0.94 

Precision(false) 

Precision(fal
se) 
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Recall(false) 

Recall(false
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performed poor in true data set, because the 

distribution of the data sets not balanced i.e. 90% 

false data set and 10% for true data set as shown in 

figures 4, 5, and 6. 

 
Figure 4: F1 measure in true data set for KNN, 

Decision Tree, SVM, and Naïve Bayes. 

 

 
Figure 5: Recall measure in true data set for KNN, 

Decision Tree, SVM, and Naïve Bayes. 

 

 
Figure 6: Precision measure in true data set for KNN, 

Decision Tree, SVM, and Naïve Bayes 

 

Finally, all classifiers perform excellent to 

detecting defects on the software. This excellent 

result may indicate that data mining can be 

considered as a tool to determine if the software has 

defects or not as shown in figures 7, 8, and 9. 

 

Figure 7: F1 average for KNN, Decision Tree, SVM, 

and Naïve Bayes. 

 

 
Figure 8: Recall average for KNN, Decision Tree, 

SVM, and Naïve Bayes. 

 

 
Figure 9: Precision average for KNN, Decision Tree, 

SVM, and Naïve Bayes 

 

Conclusion and future works 

In this paper we discussed the problem of 

software defects prediction and we used classification 

techniques to solve this problem. We used the NB 

algorithm which is based on probabilistic framework, 

SVM algorithm, K-nearest Neighbor (KNN) and 

Decision Trees to handle our problem.  

Performance of All classifiers was excellent to 

detecting defects on the software. This performance 

may indicate that data mining can be considered as a 

tool to determine if the software has defects or not. 

The average of three measures obtained against 

NASA data set indicated that the NB algorithm 

outperformed the others.  

In near future, we intend to propose a new 

multi-label classification approach based on 

association rule for the software defects problem and 

enhance one of the classification algorithms. 
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