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Abstract: Iron is considered one of the most essential elements required by all organisms. It involves both 
photosynthetic and respiratory electron transport chains.  Since the biological availability of iron in nature is limited 
and it is highly required by cyanobacteria, focusing on the adaptation or tolerance mechanism in thermophilic 
cyanobacteria has a lot of attention.  Through the present work, a highlight on the ultrastructural changes of 
Thermosynechococcus elongatus cells due to iron deficiency is investigated. Beside biochemical and spectroscopical 
analysis, transmitting electron microscope images have been used for description these changes. Results showed 
remarkable rising in DNA, protein and lipids contents, while reduction in cell size and chlorophyll content. 
Transmitting electron microscopic images showed reduction in cell diameters, length and width. Moreover, the 
thylakoid thickness and cytoplasm area have reduced, while the nucleoplasm area was increased. In addition, this 
work adopts for the first time an effective indicator ratio (A280/A440) that could be used as fast monitor for 
ultrastructural changes.  Thermosynechococcus elongatus cells thought to adapt Fe-limitation by decreasing the 
proteins containing iron and synthesis specific proteins that decrease the rate of photosynthesis. Hence, energy was 
saved by reduction the cells size and cytoplasm area. Cells produced iron resistant and regulators proteins to achieve 
the necessary metabolism. Observed changes in cell size, thylakoid membrane thickness and the large nucleoplasm 
area could be taken as monitor in response to iron-deficiency. 
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1.Introduction: 

Although iron is existed in high amount on 
earth, its biological availability is limited (Frausto da 
Silva and Williams, 1993, Lippard and Berg, 1994). 
Almost all photosynthetic organisms exhibit the same 
behavior against iron deficiency, where all of them act 
to decrease the expression of iron containing protein 
(Raven 2013). Phytoplanktons conduct about 40% of 
global photosynthesis in aquatic environments. Since 
cyanobacteria contribute remarkably to this fraction, 
so they require large amount of iron to maintain their 
Fe-rich photosynthetic apparatus. Biochemical 
analysis of thylakoid membranes isolated from iron-
deficient cells was reported by Pakrasi et al. (1985), 
while changing in phycobilins was demonstrated by 
Sherman and Sherman (1983). Structure 
investigations of IsiA, IdiA and IsiB were identified 
by Sandmann, (1985), Falk et al. (1995), Ivanov et 
al. (2000), Boekema at al (2001), Cadoret et al. 
(2004), Arteni et al. (2005) and Lax et al. (2007). 
Singh et al. 2003 used a DNA microarray technology 
to analyze a full-genome microarray of the 
cyanobacterium Synechocystis sp. PCC 6803 to find 
regulations of gene transcription. Watts et al. (2003), 
and Kong et al. (2010) investigated the role of 
nitrogen monoxide and carbon monoxide in cellular 
adaptation to iron deficiency. 

Responses of iron deficiency effects could be 
reduction or changing in the molecules structures 
which directly or indirectly iron-dependent. The role 
of iron deficiency on cell growth was reported by 
Straus (1994), who summarized these responses into 
three different categories: acquisition, compensation, 
and retrenchment. Acquisition is s process by which 
the cell produces specific iron-chelating molecules 
(Dong and Xu, 2009). This mechanism has been 
reported in higher plants, fungi, bacteria, and 
cyanobacteria (Braun and Winkelmann, 1987). 
Compensation is a mechanism by which new proteins 
are synthesized and replace the ordinary proteins. A 
prominent example is IsiB (Sandmann, 1985, Falk et 
al. 1995). The changes and the reduction of cellular 
structures and physiological processes are known as 
Retrenchment. It is obviously monitored in Anemia. 
For high plants and green algae lead to chlorosis, a 
typical iron-deficient symptom and a range of genes 
related to the iron acquisition are induced (Henriques 
et al., 2002, Xie et al., 2012, Yang et al., 2012) 

Recently, Kranzler et al. (2013) reported 
that cyanobacterial iron requirements exceed 10-fold 
compared to the non-photosynthetic prokaryotes and 
are high even among other photosynthetic organisms. 
As shown, most previous studies were interested in the 
photosynthetic process and/or involved photosynthetic 
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protein complexes. This work highlights to the 
mechanism, including the morphological and ultra-
structural changes, in Cyanobacterium 
Thermosynechococcus elongatus, by which it can 
resist Fe-stress condition. These changes could be a 
model of prokaryotic oxygenic organism.   
2. Material and Methods 
Cultivation conditions. 

Cultivation of Thermosynechococcus 
elongatus cells were achieved according to Ivanov et 
al. (2006) with some modifications. Preculture was 
prepared by cultivation of cells in liquid BG-11 
(Rippka et al., 1979) in rod-shaped glass tubes 
bubbled with 5 % CO2 in air, 50 °C and continuous 
illumination of 50 mmol.m-2.s-2. Bi-distal water was 
used to prepare both normal BG-11 medium and that 
free of iron. Preculture was washed four times with 
BG-11 free iron media. Inoculums were injected to 
both normal and BG-11 free iron media to reach 
OD750nm of 0.2. Both cultures were exposed to the 
same conditions of preculture. Optical density at 750, 
680 and 673 nm was detected after 20, 50, 70 and 90 
hours.    
Absorption spectral analysis 

Absorption spectra of 0.5 ml of cultures 
samples were measured at different incubation periods 
using Shimadzu UV-2450. Specific wavelengths (750, 
680 and 673 nm) were detected. OD680/OD673 ratio 
(<1) was used to monitor the cell adaptation in case of 
iron free medium.  
Estimation of protein, DNA, total lipids and total 
chlorophyll contents.    

2 µl of culture samples were dropped onto 
NanoDrop ND-1000 Spectrophotometer. UV-spectral 
analysis and concentration of protein and DNA were 
calculated using the instrument program. Total lipids 
were estimated according to Bligh and Dyer (1959) 
using 3 sequences of chloroform-methanol solution. 
Total chlorophyll content was estimated using 100% 
methanol according to Porra et al. (1989).  
Estimation of cell Size and numbers 

Beckman Coulter Z Series 9914591-D was 
used in estimation the cells size and numbers 
according to manual Beckman Coulter Inc., CA. 
Transmitting electron microscope image  

30 ml of sample suspensions were 
precipitated at 5000g, and then fixed by in dry acetone 
containing 2% glutaraldehyde and 0.1% tannic acid. 
Following acetone rinses, the samples were incubated 
in 0.1% uranyl acetate and 1% OsO4 for 1 h at room 
temperature. Samples were then washed with dry 
acetone, infiltrated to increase concentrations over 6 
days and polymerized at 60°C. Sections were cut 
using an Ultracut UCT microtome. Samples were 
examined and investigated using JEOL 100CX 
transmitting electron microscope, at the Electron 

Microscope Unit at the Faculty of Science, Alexandria 
University, Egypt (El Shafai et al., 2011).  
3. Results: 

Iron is an essential element involves the cell 
structure in prokaryotic organisms, where it plays an 
important role in both respiratory and photosynthetic 
processes. Hence, its starvation effects on cell 
structure and components were monitored through 
spectroscopical analysis. Figure 1 shows the growth 
behavior of T. elongatus cells that have been grown in 
both normal and iron deficiency media. A remarkable 
reduction in growth rate in case of Fe-deficiency 
medium was recognized (0.016 A750nm/hours), 
compared to that of normal media (0.032 
A750nm/hours). Since the growth rate is too slow in case 
of Fe-stress condition, lag and logarithmic phase were 
not distinguished. In T. elongatus cells, the maximum 
absorbance of chlorophyll content at red region was 
normally at 680 nm which could be recognized in 
figure 1A and the ratio of OD680/OD673 was always 
more than 1. In contrast, partial reduction in OD680 
was detected so the OD680/OD673 ratio shifted down to 
be less than 1. This ratio gradually decreased until the 
cells dramatically died. UV-Vis absorption spectral 
analysis of both cultivation conditions exhibited 
several variations.  

As shown in figure 2, the difference in 
absorption spectra between Fe-deficiency condition 
and normal condition exhibited interested changes. 
Absorbance at visible spectra showed remarkable 
decrease compared to cultivation in normal medium. 
Negative peaks were detected at 693 nm, 620-650 nm 
and 500- 540 nm. A positive peak was detected at 673 
nm with shoulder at 680 nm. These results were 
supported by results in table 1, where a remarkable 
reduction in chlorophyll content was estimated in case 
of stressed cells to be 0.0083 Chl/ml compared to 
0.025 Chl/ml in case of normal cultivated cells. 
Interested results were also detected at UV-region, 
where more than double absorbance value was 
recorded in stressed cells (Figure 3 A,B). Comparison 
in DNA content of both cells grown in normal and Fe- 
deficiency media are shown in table 1. More than 
double amount of DNA (220%) was estimated as a 
result of Fe-stress. Protein content also exhibited 
almost the same behavior, since 251% was the rising 
in protein content in response to iron deficiency. It 
should be point that A260/A280 values were almost 
constant in both conditions (Figure 3-b). Total lipid 
contents showed same behaviour results to that of 
DNA and protein, where enhancement in the lipid 
content (196%) was observed due to Fe-stress. 
A280/A440 ratio showed interesting difference, where 
the ratio which is normally less than one, jumped to be 
1.91 in case of iron stressed cells. Astonishing results 
were recorded for cell numbers, where 14 % rising in 
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cell numbers resulted from Fe-stress. While a 
remarkable reduction in cell sizes (14 %) were 
estimated due to Fe-deficiency.  

Figure 4 shows transmitting electron 
microscope images of T. elongatus cells cultivated in 
normal and iron free medium. These images adopted 
clear pictures for morphological as well as ultra-
structural changes. Through longitudinal sections, 14-
20 % reductions in cell length and width respectively 
were calculated in Fe-stressed cells. In addition, 10 % 
reductions in cell diameter were observed in transverse 
sections. On the other hand, 26 % reductions in 

thylakoid membrane thickness were estimated in Fe-
stressed cells (Table 2). Compared to normal 
cultivated cells, the transferred sections of T. 
elongatus grown Fe-limited medium showed 
remarkable increasing in the nucleoplasm area and 
reduction in cytoplasm area (Figure 4-C, D, G, H).  

It could be concluded that in Fe-stressed 
cells, remarkable reduction in cell size, diameter, 
length, width, thylakoid membrane thickness and 
chlorophyll content were observed. In contrast, rising 
in protein content, DNA content, lipid content and cell 
density were recorded as a result of iron deficiency.  

 
Figure 1 (A, B): Thermosynechococcus elongatus growth curve. Cells were grown in normal BG11 medium. Cells 
were harvested and washed four times with BG11-free iron medium before inoculation to BG-11 media A and BG-
11 free iron media B. Cultures were grown in continuous light intensity of 50 mmol.m-2.s-2.  
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Figure 2: Absorption spectral difference in (Fe deficiency – normal culture) of T. elongatus cells grown in normal 
and iron deficiency media. Both cultures were diluted by HEPES buffer (pH 7.5) to about OD440 = 1.5 before 
measurements. 

 
Figure 3: Absorption spectra at UV-region of T. elongatus cells grown in normal and iron deficiency media. A) 
Absorbance and concentration of DNA of both samples were achieved after 92 hours growing period. B) Diagram 
showing comparison between A280, A260/A280 and protein concentration 
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Figure 4: Transmission electron microscope images showing differences between Fe-stressed and normal cultivated 
T. elongatus cells, respectively.  A and B show longitudinal sections; C and D are transferred sections; E and F show 
thylakoid membrane thickness in longitudinal sections; and G and H show thylakoid membrane thickness in 
transferred sections. 
 
Table 1: Comparison between chlorophyll content, cell no. and cell size of T. elongatus cells grown in normal and 

iron deficiency media.  
 Fe Deficiency media Normal media Changing % 

Chlmg/ml 0.0083 0.025 33.2% 
DNA content (ng/ml) 53.64 24.13 220 % 

Protein content (mg/ml) 0.98 0.39 251% 
Lipids content (mg/ml) 0.51 0.26 196% 

A280/A440 ratio 1.95 0.85 228% 
Cell no. /ml 1.91E+08 1.68E+08 114% 

Cell size 2.152 µm 2.511 µm 86% 
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Table 2: Comparison between T. elongatus cells grown in normal and iron free medium of cell according to: length, 

width, diameter and thickness of thylakoid membrane. These data are based on electron microscope 
measurements.  

 Fe Deficiency media  Normal media Changing % 
Length (µm) 1.803 ± 0.055 2.093 ± 0.118 86% 
Width (µm) 0.358 ± 0.034 0.449 ± 0.05 80% 

Diameter (µm) 0.452 ± 0.052 0.504 ± 0.053 90% 
Thylakoid membrane Thickness (nm) 14.58 ± 1.2995 19.75 ± 4.053 74% 

 
4. Discussion:  

Distribution and metabolism of living 
organisms are strongly affected by availability of 
nutrients. In spite of high existence of iron in nature, 
its biological availability is very limited. The 
abundant of Thermosynechococcus elongatus was 
limited at low Fe- availability (Suzuki et al., 2005). 
Beside its role in all photosynthetic electron 
transport, iron is required essentially as Co-factors in 
most enzymatic systems especially those of 
respiration (Singh et al. 2002). Since iron is 
estimated in high quantities within the structure of 
thylakoid membrane in cyanobacteria and other 
photosynthetic organisms, the rate of growth 
exhibited slow behavior, where T. elongatus cells 
switched their metabolic priority to overcome or 
adapt the stress. The genomes of cyanobacterial 
species code for a multitude of iron transporters, iron 
storage complexes and iron-responsive elements 
involved in maintaining homeostasis in a highly 
variable environment (Kranzler et al. 2013) 
Combination of cell size reduction with low growth 
rate seemed to be an effective way for controlling the 
metabolic machinery of the cells. Also, it obviously 
explained high DNA content. Increase DNA amount 
was accompanied with high protein content. The 
ordinary proteins were expressed in low amount 
under Fe stress (e.g. trimeric photosystem 1 and 
phycobilins, see Figure 2), while several new 
responding proteins were expressed to adapt this 
stressed condition. Dong and Xu (2009) detected 
five newly synthesized proteins at outer membrane of 
Anabaena sp under iron-deficient conditions. They 
suggested that this protein could enhance the uptake 
of iron. Also, Nield et al. 2003 pointed to expression 
of new proteins as a signal for iron limitations or high 
hydrogen peroxide. Several publications cited the 
adaptation of the multiprotein complexes PSII and 
PSI to iron starvation is a sequential process, which is 
characterized by the enhanced expression of two 
major iron-regulated proteins, IdiA (iron deficiency 
induced protein A) and IsiA (iron stress induced 
protein A). These proteins thought to be energy 
quencher protective for photosystems against 
oxidative stress under conditions of mild iron 
limitation (Nield et al. 2003, Ivanov et al. 2006, Van 

der Weij-de et al. 2007), replace phycobilins 
(Pakrasi et al. 1985, Burnap et al. 1993) or 
chlorophyll storage protein, which can provide 
chlorophylls for the synthesis of chlorophyll-binding 
proteins during recovery from iron stress (Burnap et 
al. 1993). Although expression of IsiA is 
accompanied with Chlorophyll a (Van der Weij-de 
et al. 2007), present results exhibited large depletion 
in chlorophyll content as response of Fe-stress. These 
results could be the art fact of reduction in thylakoid 
membrane, cytoplasm area and cell size. Here, a new 
effective parameter (A280/A440 ratio) was adopted and 
suggested as sensor for monitoring the cell structural 
changes. Less than one is the A280/A440 ratio that 
indicates the balance between chlorophyll content 
and protein content under normal condition. The 
rising of this ratio gives strong evidence to cell 
modifications or adaptations.    

Lipids are the most effective source of 
storage energy and have important role in tolerance to 
several physiological stressors in all organisms 
including cyanobacteria. The enhancement of lipid 
content could be another adaptation way in T. 
elongatus. Iron starvation in C. reinhardtii leads to 
formation of lipid droplets and accumulation of 
TAGs and enhancement the amount of total and 
saturated fatty acid that thought resulting in 
remodeling of lipid membranes as suggested for T. 
elongatus (Ivanov et al., 2000) and for C. Reinhardtii 
(Urzica et al., 2013). On the other hand, lipid 
oxidation is problematic as enzymes do not control 
many oxidative chemical reactions and some of the 
products of the attack are highly reactive species that 
modify proteins and DNA (Singh et al. 2002). The 
electron microscope images saved clear explanations 
of other results. The reduction in size and thickness 
of thylakoid membrane gave strong evidence of 
reduction in membranous photosynthetic apparatuses 
containing iron (e.g. PS1, PS2 and Cytb6f), so Chl a 
content and phycobilins were consequently reduced. 
In contrast, increase nucleoplasm area per cell 
volume came in agreement with total DNA content, 
which indicated that T. elongatus cells switch the 
prior metabolic activity. T. elongatus cells adapted 
Fe-limitation by reduction the proteins containing 
iron even photosynthetic complexes. Moreover, they 
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produced specific proteins that decrease the rate of 
photosynthesis (IsiA and IdiA). For this reason, the 
available energy was consequently reduced; hence 
cells may save energy by reduction the cells size and 
thylakoid membrane. Cells produced iron resistant 
and regulators proteins to achieve the necessary 
metabolism. The high lipid and protein content 
thought to be the mechanism by which nutrients and 
metabolites movements are controlled. It could be 
concluded that several ultrastructural changes were 
observed as responses to iron-deficiency. The 
reductions in cell size and cytoplasm area are 
considered an effective mechanism for saving energy 
and monitoring iron deficiency in cyanobacteria. 
(A280/A440 ratio) is considered a new effective 
parameter by which the cell structural changes could 
be monitored.  
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