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Abstract: This paper presents a new similarity measure to be used for general tasks including supervised learning, 
which is represented by the K-nearest neighbor classifier (KNN). The proposed similarity measure is invariant to 
large differences in some dimensions in the feature space. The proposed metric is proved mathematically to be a 
metric. To test its viability for different applications, the KNN used the proposed metric for classifying test 
examples chosen from a number of real datasets. Compared to some other well known metrics, the experimental 
results show that the proposed metric is a promising distance measure for the KNN classifier with strong potential 
for a wide range of applications. 
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1. Introduction 

A similarity measure is a function that gives 
a non-negative number to each pair of vectors to 
define a notion of likeness (Hagedoorn 2000). Such a 
measure is vital for a large number of applications 
and research areas including – but not limited to – 
pattern matching algorithms, artificial intelligence 
(Hagedoorn 2000), machine learning (He, Chen and 
Chen 2013), regression analysis (Wessela and Schork 
2006) and data mining (Geng and Hamilton 2006), in 
addition to other research areas such as social 
science, economy, null theory testing etc. Similarity 
measures are needed in almost all knowledge 
disciplines. 

A large number of similarity measures are 
proposed in the literature, perhaps the most famous 
and well known being the Euclidean distance stated 
by Euclid two thousand years ago. Over the last 
century great efforts have been made to find new 
metrics and similarity measures to satisfy the needs 
of different applications. New similarity measures are 
needed in particular for use in distance learning 
(Yang 2006), where classifiers such as the k-nearest 
neighbor (KNN) are heavily depended upon for 
choosing the best distance. Optimizing the distance 
metric is valuablein several computer vision tasks, 
such as object detection, content-based image 
retrieval, image segmentation and classification. 

Cha has categorized similarity measures into 
eight families (Cha, 2007) and (Cha, 2008): 
1- The Minkowski family, which includes Euclidean 
distance, City block or Manhattan distance and 
Chebyshev distance. 
2- The absolute differencefamily, which includes 
Sørensen, Gower, Soergel, Kulczynski, Canberra and 
Lorentzian distances. 

3- The intersection family, which includes 
Intersection, Czekanowski, Motyka, Kulczynski, 
Ruzicka and Tanimoto distances. 
4- The inner product family, which includes Inner 
Product, Harmonic Mean, Cosine, Kumar-
Hassebrook, Jaccard and Dice similarity measures. 
5- The Fidelity family, which includes Fidelity 
similarity measure, Bhattacharyya, Hellinger, 
Matusita and Squared-chord distances. 
6- Squared L2 family, which includes Squared 
Euclidean, Pearson, Neyman, Squared, Probabilistic 
Symmetric, Divergence, Clark and Additive 
Symmetric distances. 
7- Shannon’s entropy family, which includes 
Kullback–Leibler, Jeffreys, K divergence, Topsøe, 
Jensen-Shannon and Jensen difference distances. 
8- Combinations (of the previous measure) family, 
which includes Taneja and Kumar-Johnson distances. 

A much larger number of distances and 
similarity measures are illustrated in the work of 
(Deza and Deza 2009) showing the applications of 
each similarity measure. None of these functions 
measure similarity perfectly for all problems, as each 
deals with a specific data context and assumptions. 
According to the no free lunch theorem (Duda, Hart 
and Stork 2001), no distance function performs better 
than the other; the use of a particular distance is 
problem and data dependent. 

The similarity measures that are used the 
most are Euclidean (ED) and Manhattan distances 
(MD)– both assume the same weight to all directions. 
In addition, the difference between vectors at each 
dimension might approach infinity to imply 
dissimilarity (Bharkad and Kokare 2011), therefore if 
there is abnormality in one value in any direction this 
will be reflected in the final result of the distance; for 
example, if we have two vectors of size 100, 
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V1=(1,2,3,...,99,100) and V2=(1,2,3,...,99,0), then 
ED(V1,V2) and MD(V1,V2) is 100. Perhaps both 
vectors are equal, but the last value is changed for 
some reason; noise, for instance, which shows that 
such distances are sensitive to large differences in 
any direction, and this allows some dimensions to 
dominate the distance even in the absence of noise. 

To solve the previous problem, researchers 
usually opt for either normalization or 
standardization of the data. However, both have their 
own weaknesses. If there are outliers, most of the 
data will be forced to scale down using 
normalization; on the other hand, standardization 
degrades data and does not provide bounded 
data(Saitta 2007).  

The so-called "Wave-Hedges distance" 
shown in Eq(1) solves part of the previous problem. 
This measure has been applied to compressed image 
retrieval (Hatzigiorgaki and Skodras 2003), 
probability density function similarity (Cha, 2007), 
content based video retrieval (Patel and Meshram 
2012), Image Retrieval (Khapli and Bhalchandra 
2011), (Braveen and Dhavachelvan 2009), time series 
classification (Giusti and Batista 2013), landscape 
retrieval (Jasiewicz, Netzel and Stepinski 2013), 
image fidelity (Macklem 2002), Histogram Distance 
Measures (Cha, 2008) and finger print recognition 
(Bharkad and Kokare 2011). Interestingly, the source 
of the "Wave-Hedges" metric has not been correctly 
cited, and some of the previously mentioned 
resources allude to it incorrectly as (Hedges 1976). 
The source of this metric eludes the author, despite 
best efforts otherwise. 

Even the name of the distance "Wave-
Hedges" is questioned, and therefore will not be used 
in the rest of this paper. Rather, we will refer to this 
distance as Eq(1) for the rest of this paper. 

���(�, �) = ∑ �1 −
�� �(��,��)

���(��,��)
��

���           (1) 

 
2. Material and Methods  

There are 3 problems associated with Eq(1), 
those are: 
1- It cannot deal correctly with points having 0 
values. For example, if Ai is equal to 0, then the 
distance between 0 and any other positive non-zero 
value is 1, no matter how large or small that value is. 
2- The distance between 0 and 0 is undefined.  
3- In addition, the distance is not well defined on 
points with negative values. For example, the 
distance between -1 and -2 is equal to -1, while the 
distance between 1 and 2 is 0.5. 

This paper presents a new similarity 
measure based on Eq(1) to solve all the above-
mentioned problems. The proposed similarity 

function between two points in two vectors is written 
as:  
�(��, ��) =

�
1 −

���� �(��,��)
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And for all the vectors dimensions we get: 

D��������(A, B) = ∑ �D(A�, B�)��
���        (3) 

 
where A and B are both vectors with size m. Ai and 
Bi are real numbers. 

As can be seen from Eq(2 and 3), the 
proposed measure is bounded by [0,1[. It reaches 1 
when the maximum value approaches infinity 
assuming the minimum is finite, or when the 
minimum value approaches minus infinity assuming 
the maximum is finite. This is shown by Figure 1 and 
the following equations. 

lim
��� (��,��)→∞

�D(A�, B�)� =  lim
�� �(��,��)→�∞

�D(A�, B�)� = 1           (4) 

 

 
Figure 1. Representation of the proposed similarity 
measure between the point 0 and n, where n belongs 
to [-10, 10] 

 
This means that the more a pair of values is 

similar, the nearest to zero the measure will be, and 
the more a pair of values is dissimilar, the nearest to 
one the measure will be. In other words, no matter 
what the difference between two values is, the 
distance will be in the range of 0 to 1. 

By studying some properties of the proposed 
measure, such as non-negativity, equivalently, 
symmetry and Triangle inequality we may state the 
following Lemmas. 
Lemma 1: the proposed similarity measure is non-
negative function. 
Proof: for any two positive numbers, the proposed 
distance uses the first part of  Eq(1) so we need to 
prove that 

1 −
���� �(��,��)

�����(��,��)
≥ 0  This is equivalent to  
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Since we assume two positive numbers 

then  max(��, ��) ≥ 0 , by dividing positive value 
 |�� − ��| by another positive value we get positive 
value, which is greater than 0. 
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If the minimum number is negative, the piecewise 
function uses the other formula which deals with 
negative numbers by adding the absolute value of the 
minimum number to both numerator and 
denominator. So we need to prove that  

1 −
����� (��,��)�|�� �(��,��)|

����� (��,��)�|�� �(��,��)|
≥ 0  

We know that �� �(��, ��) + |�� �(��, ��)| = 0  so 
we get 

��� (��,��)�|�� �(��,��)|

����� (��,��)�|�� �(��,��)|
≥ 0   

We get ��� (��, ��) + |�� �(��, ��)| ≥ 0  
Now if �� �(��, ��) ≥ 0  the previous inequality is 
true. Else, we know that 

 |�� �(��, ��)| ≥ |���(��, ��)|  
By subtracting a smaller value (−��� (��, ��) ) from 
a larger value |�� �(��, ��)| we get positive value, 
and this prove the previous inequality. 
Lemma 2: the proposed similarity measure is an 
equivalence function. 
Proof: a function D(A,B)=0 if and only if A 
coincides with B. If A coincides with B then the 
min(A,B)=max(A,B).  
By dividing a value by itself we get 1. By subtracting 
this 1 from 1 as in our formula we get 0.We need to 
prove that: 

1 −
���� �(��,��)

�����(��,��)
= 0  (5) 

By moving the negative part to the right we get: 

1 =
���� �(��,��)

�����(��,��)
   (6) 

If Ai coincides with Bi then: 
�� n(��, ��) = max(��, ��) (7) 

By replacing the min function with the max function 
we get: 

1 =
�����(��,��)

�����(��,��)
   (8) 

And this gives: 
1 = 1 □   (9) 

Another approach for proving equivalently is to 
prove that D(A,A)=0, since we are considering the 
distance of a vector from itself. The 
min(Ai,Ai)=max(Ai,Ai)), by replacing the min with 
the max in Eq(5) we end up with 1-1=0. 
Lemma 3: the proposed similarity function is 
symmetric. 
Proof: a function D is symmetric if and only if 
D(A,B)= D(B,A) for all points A , B. so the proposed 
similarity measure should satisfy: 

1 −
���� �(��,��)

�����(��,��)
= 1 −

���� �(��,��)

�����(��,��)
  (10) 

 
Here, we rely on the fact that the minimum 

and maximum functions are symmetric:  
min(A,B)=min(B,A) and max(A,B)=max(B,A). By 
substitution in the previous equation we get: 

1 −
���� �(��,��)

�����(��,��)
= 1 −

���� �(��,��)

�����(��,��)
  (11) 

Moving the negative part to the right side of Eq(11) 
we get: 

1 = 1 −
���� �(��,��)

�����(��,��)
+

���� �(��,��)

�����(��,��)
=1 (12) 

Both sides of the equation are equal, and then D is 
symmetric.   
Lemma 4: the proposed similarity function satisfies 
the Triangle inequality. 
Proof: a similarity function D satisfies the Triangle 
inequality if and only if D(A,C) ≤ D(A,B) + D(B,C)  
for all points A , B and C. so the proposed similarity 
measure should satisfy: 

1 −
���� �(��,��)

�����(��,��)
≤ 1 −

���� �(��,��)

�����(��,��)
+ 1 −

���� �(��,��)

�����(��,��)
 (13) 

 
For simplicity, assume that ac=1+min(A,C), 
ab=1+min(A,B), bc=1+min(B,C), AC=1+max(A,C), 
AB=1+max(A,B) and BC=1+max(B,C) then Eq(13) 
becomes: 

1 −
��

��
≤ 1 −

��

��
+ 1 −

��

��
  (14) 

Moving the negative values to the opposite side of 
the equation we have: 

1 +
��

��
+

��

��
≤ 2 +

��

��
  (15) 

Moving the 1 to the right we get: 
��

��
+

��

��
≤ 1 +

��

��
   (16) 

Notice that ac<= AC, because the minimum of two 
values is less than or equal to their maximum, 
therefore ac/AC<=1. Adding this inequality to the 
Eq(16) we get: 

��

��
+

��

��
+

��

��
≤ 2 +

��

��
  (17) 

By subtracting ac/AC from both sides we get: 
��

��
+

��

��
≤ 2   (18)  

Notice that ab<=AB for the same previous reason, 
therefore: 

��

��
≤ 1    (19) 

And bc<=BC, therefore: 
��

��
≤ 1    (20) 

Combining the last two inequalities gives and proves 
Eq(18). □ 

According to the previous discussion we can 
state the following theorem. 
Theorem 1: the proposed similarity function is a 
metric. 
Proof: a distance function should satisfy the 
following properties to be called a metric (Peeters, et 
al. 2008) and (Cha & Sriharib, 2002): 
1- Non-negativity: D(A,B)>=0  for all points A , B.  
2- Equivalently: D(A,B)=0 if and only if A coincides 
with B. 
3- Symmetry: D(A,B)= D(B,A) for all points A , B. 
4- Triangle inequality: D(A,C) <= D(A,B) + D(B,C)  
for all points A , B and C.   
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The previously proved Lemmas 1, 2, 3 and 
4, show that the proposed distance function satisfies 
all the previous properties and therefore is a metric.  
3. Results  

For further study of the proposed metric, we 
opted for the KNN classifier, which naturally 
depends on similarity measures. We used only one 
neighbor 1-NN to ensure that any enhancement in the 
performance came from the similarity measure rather 
than the number of neighbors taken. For the 
experiments, we chose 19 different data sets from the 
UCI Machine Learning Repository (Bache and 
Lichman 2013). Table 1 depicts the data sets used. 
 

Table 1. Description of the data sets used,  

Name #Ex #F #C data type Min Max 

Heart 270 25 2 +Int 0 564 

Balance 625 4 3 +Int 1 5 

Cancer 683 9 2 +Int 0 9 

German 1000 24 2 +Int 0 184 

Liver 345 6 2 +Int 0 297 

Vehicle 846 18 4 +Int 0 1018 

Vote 399 10 2 +Int 0 2 

Australian 690 42 2 + real 0 100001 

Glass 214 9 6 + real 0 75.41 

Sonar 208 60 2 + real 0 1 

Wine 178 13 3 + real 0.13 1680 

Diabetes 768 8 2 real & Int 0 846 

Monkey1 556 17 2 binary 0 1 

Ionosphere 351 34 2 real -1 1 

Phoneme 5404 5 2 real -1.82 4.38 

Segmen 2310 19 7 real -50 1386.33 

Vowel 528 10 11 real -5.21 5.07 

Wave21 5000 21 3 real -4.2 9.06 

Wave40 5000 40 3 real -3.97 8.82 

+Int:  positive integer numbers 
+real: positive real numbers 
#Ex: number of examples 
#F:  number of features 
#C: number of classes 
 

Each data set is divided into two data sets– 
one for training and the other for testing. 30% of the 
data set is used for testing, and the rest of the data is 
for training. Each time the 1-NN is used to classify 
the test samples using ED, MD, Eq(1) and the 
proposed distance shown in Eq(3). 

The 30% of data which is used as a test 
sample is chosen randomly, and each experiment on 
each dataset using a different distance is repeated 10 
times to get random examples for testing and 

training. Table 2 shows the results of the 
experiments. The accuracy is averaged over the 10 
runs. 

 
Table 2. Comparison of the performance of the 1-NN 

using different distances 

Dataset ED MD Eq1  Proposed 

Heart 0.61 0.64 0.50 0.77 

Balance 0.79 0.79 0.82 0.82 

Cancer 0.95 0.96 0.77 0.96 

German 0.66 0.68 0.71 0.69 

Liver 0.59 0.60 0.61 0.62 

Vehicle 0.63 0.67 0.67 0.66 

Vote 0.92 0.93 0.49 0.92 

Australian 0.65 0.69 0.55 0.82 

Glass 0.70 0.71 0.36 0.67 

Sonar 0.82 0.83 0.83 0.84 

Wine 0.76 0.82 0.96 0.97 

Diabetes 0.69 0.70 0.62 0.68 

Monkey1 0.79 0.79 0.48 0.79 

Ionosphere 0.88 0.90 0.56 0.91 

Phoneme 0.90 0.90 0.66 0.90 

Segmen 0.96 0.97 0.14 0.96 

Vowel 0.97 0.98 0.07 0.97 

Wave21 0.78 0.77 0.51 0.76 

Wave40 0.76 0.75 0.38 0.72 

Mean 0.78 0.79 0.56 0.81 
 
4. Discussions  

As can be noticed from Table 2, the 
proposed distance achieved good results, 
outperforming the other distances in 10 datasets, and 
the overall average accuracy is the best among all the 
tested distances. 

The lowest accuracies were recorded by 
Eq(1) as expected. This happens because of the 
problems mentioned earlier associated with Eq(1). 
For example, the accuracies of Eq(1) on Vowel, 
Segmen and Waveform40  are 7.30%, 14.20% and 
38.10% respectively. The reason for this low 
performance is because of the data type used on those 
datasets that contain real numbers (positive and 
negative values, see Table 1), while Eq(1) is not well 
defined in negative values. 

Eq(1) also achieved low performance on 
other datasets, such as Glass, Monkey1and Heart, 
with accuracies of 35.80%, 47.50%  and 49.80% 
respectively. This is justified by the number of zero 
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values in those datasets. The data type of Monkey1is 
binary; this gives the zero values about a 50% chance 
of appearing in such a dataset. Glass and Heart also 
have a large number of zero values, This increases 
the probability of getting the distance from 0 to any 
number, which in this case will be 1 all the time, in 
addition to the "division by zero" problem which is 
also not defined in Eq(1).  

On the contrary, we noted that Eq(1) 
performed very well on the Wine and Balance 
datasets. This is because all values there are non-
negatives and non-zeros. It also performed well in 
Sonar and German datasets, where all values are 
positive with some zeros. These results justify the 
invention of the proposed metric Eq(3), which is 
inspired by Eq(1) and the modification made to fit all 
data types. 

Interestingly, the Manhattan distance 
outperformed Euclidean distance in most datasets. 
This is because the difference between the paired 
values is squared in the ED, which 
emphasizes/reinforces the difference and allows one 
direction (feature) to dominate the result of the 
distance. This complies with some other researchers' 
results such as (Bonet, et al. 2008) and (Al Gindi, 
Attiatalla and Sami 2014), and contradicts others 
such as (Liu, et al. 2008). This reminds us again of 
the no-free-lunch theorem, i.e. there is no distance 
measure better than the other (including the proposed 
one) – it mainly depends on the problem and the data 
used. 

This work proposes a new similarity 
measure, which we have proved mathematically as a 
metric function. This metric was compared to other 
well known metrics such as ED and MD in terms of 
accuracy. 

Our results based on mathematical proofs 
and experiments on real data, show that the proposed 
metric is a promising distance measure, not only for 
the KNN classification but also for other problems 
and domains.  

This complies with what other researchers 
have shown: that a well-defined distance metric may 
notably benefit KNN classifier performance 
compared to Euclidean distance (Yang 2006), (He, et 
al. 2004) and (Hastie and Tibshirani 1996). 

Future work includes applying the proposed 
metric to other related problems such as k-mean 
clustering and hierarchal clustering to investigate its 
superiority in solving such problems. 
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