Therapeutic Effects of Powder and Alcoholic Aqueous Extract of *Vitellaria paradoxa* on Diabetic Rats

Ali Monahi Nazal Al Shamhamiri

Faculty of Home Economics, the Public Authority for Applied Education and Training, Kuwait

anab71@hotmail.com

Abstract: The objective of this work study the therapeutic effect of powder and alcoholic aqueous extract of *Vitellaria paradoxa* in blood glucose and lipid profile of diabetic rats. In the experiment thirty rats were divided into six groups (n=5). Streptozotocine was intraperitoneally given at dose 65 mg/kg body weight, animals showing fasting blood glucose higher than 300mg/dl were selected and used as diabetic rats. *Vitellaria Paradoxa* powder and alcoholic aqueous extracts were administered at dose levels (10,20g/diet powder), (100,200 mg/kg body weight orally extract). Hypoglycemic and hypolipidemic effects of the *Vitellaria Paradoxa* were evaluated by the determination of blood glucose, plasma insulin, total cholesterol, triglyceride, LDL-cholesterol, ALT, AST, creatinine, uric acid and bilirubin. Also, evaluated some blood antioxidant parameters by the determination of MDA, SOD and GSH. The results showed high exhibited levels of insulin in *Vitellaria Paradoxa* powder and extract comparing with diabetic control. The results showed that the diabetic rats receiving *Vitellaria Paradoxa* powder and alcoholic aqueous extract had significantly lower levels of serum total cholesterol, triglyceride and LDL-cholesterol levels than those of diabetic control group. All treated groups showed significant increase in superoxide dismutase compared with diabetic control group.

Keywords: Hypoglycemia, Hypolipidemi, Shea, Insulin

1. **Introduction**

Diabetic is considered as most serious diseases which that linked to hyperglycemia which occurs either when the pancreas cannot produce enough insulin, or when the body cannot effectively use the produced insulin (Ramachandran et al., 2010). Visceral obesity one of the main risks of metabolic disorders Dysregulated production of certain inflammatory cytokines that exceeding the anti-inflammatory adipose tissue-derived mediators (adipokines as adiponectin) is known to stimulate a state known as insulin resistance (Nishimura et al., 2009).

Diabetes mellitus is a serious health problem. DM results in hyperglycemia in comparison with absolute insulin deficiency which characterized as type I DM or type II in insulin resistance due to receptor insensitivity to endogenous insulin (EL-Hilaly et al., 2007, Aly, 2010).

Shea (*Vitellaria Paradoxa*) is an off-white or ivory-coloured fat extracted from the nut of African Shea tree (*Vitellaria paradoxa* formally Butryspermum paradoxum) (Alfred 2016). Zhenwei et al. (2012) *Vitellaria Paradoxa* and oil is rich in the essential amino acids. It also contains vitamins C, A, K and E and minerals of elements Ca, K, Fe, Na and P (Kanwjit et al., 2015 and Hanaa, 2017). Malachi et al., (2018) *Vitellaria Paradoxa* aqueous extract were illustrated in high fat diet-induced hyperlipemicrats, showed a decrease in (Tc and TG, LDL-c and atherogenic index levels (Harnafi et al., 2009). Also their produce have been associated with reduced risk of disease cancer, inflammation, immunomodulating, antithrombotic, antimicrobial, lipid peroxidation and osteoporosis (Samuel, 2015).

Therefore, the current study assessed to investigate the possible impact of *Vitellaria Paradoxa* powder and extract alone to healthy rats and against streptozotocine induced toxicity on rats by changes in biochemical and hematological parameters.

2. **Materials and Methods**

Samples preparation:

Shea (*Vitellaria Paradoxa*): was obtained from Agriculture Research Center, Giza, Egypt.

Extraction of the alcoholic aqueous extract:

The extraction according to (Charles et al., 1993).

Experimental, Biological Evaluation:

Animals:

Male rats weight (69-74) provided standard diet (Table1) and water according to (NRC, 1995). Rats were subjected to streptozotocine dissolved in cold 0.01M citrate buffer, intraperitoneally given at dose 65 mg/kg body weight to induce diabetes. After injection, rats supplied with 5% glucose solution for 48 hrs. (Broca et al. 1999), glucose more than 300mg/dl were selected as diabetic rats.

Experimental design:
Thirty rats divided into six groups (n=5), one of them Group1: Normal untreated rats, received distilled water (2.5ml/kg).

Group2: Diabetic rats control.

Group3: Diabetic rats received Vitellaria Paradoxa powder (PO) (10g/kg/diet).

Group4: Diabetic rats received Vitellaria Paradoxa powder (PO) (20g/kg/diet).

Group5: Diabetic rats received alcoholic aqueous extracts of Vitellaria Paradoxa (EX) (100mg/kg) dissolved in distilled water 1 ml/kg.

Group6: Diabetic rats received alcoholic aqueous extracts of Vitellaria Paradoxa (EX) (200mg/kg) dissolved in distilled water 1 ml/kg.

At the end of 4 weeks, animals were sacrificed. Body weights were measured three times a week. Daily changes in body weights were recorded and food efficiency ratio (FER) was calculated at the end of experiment.

Biochemical Analysis:

Blood glucose by an enzymatic colorimetric method according to (Siest et al., 1981). Insulin by Enzymatic Linked Immuno sorbent Assay (ELISA) Kit as described by (Nakagawa et al., 1973). Total cholesterol, HDL-cholesterol and triglyceride according to (Allan et al., 1974; Richmond 1973 and Fossati and Princple 1982), respectively. LDL-cholesterol and VLDL-cholesterol were calculated by the Friedewald Formula according to (Friedewald 1972).

Bilirubin, Plasma (ALT and AST) were determined according to (Reitman and Frankel 1957). Plasma total protein was determined an enzymatic method according to (Henry, 1964). Plasma uric acid was estimated an enzymatic method according to (Trinder, 1969). Plasma creatinine was determined according to (Henry 1974). (SOD) activity by (Dechatelet et al., 1974). Determination of (MDA) in red blood cells RBCs by the method described by Stocks and Donnandy (1971). Glutathione (GSH) according to (Beutler, 1984). Liver for every rat were collected and immersed in 10% neutral buffered formalin as fixative and sent to Cancer Institute for histopathological examination according to (Bancroft et al. 1996).

Statistical analysis: The obtained data were statistically analyzed using computerized SPSS (Statistic Program Sigmastat, Statistical Soft-Ware, SAS Institute, Cary, NC). Effects of different treatments were analyzed by one way ANOVA (Analysis of variance) test using Duncan’s multiple range test and p<0.05 was used to indicate significance between different groups (Snedecor and Cochran, 1967).

Results and Discussion

Data in table (1) showed the final weight was increased in all rats. Among the treated groups, the highest weight gain% in diabetic groups received Vitellaria Paradoxa powder (10g then 20g), followed by extract of Vitellaria (200 then 100mg) at percentage (89.9%), (89.8%), (83.5%) and (77.7%) respectively.

Table (1): Effect of powder and alcoholic aqueous extract of Vitellaria Paradoxa on body weight gain, food intake and food efficiency ratio of diabetic rats

<table>
<thead>
<tr>
<th>Groups Parameters</th>
<th>Initial weight (g)</th>
<th>Final weight (g)</th>
<th>Weight gain (g)</th>
<th>weight gain %</th>
<th>Daily food intake</th>
<th>food efficiency ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control –ve</td>
<td>70.3±2.7</td>
<td>149.40±20.7</td>
<td>79.1.0±8.27</td>
<td>112.53</td>
<td>13.66±3.63</td>
<td>5.75±1.81***</td>
</tr>
<tr>
<td>Diabetic control</td>
<td>72.1±3.49</td>
<td>103.94±15.3</td>
<td>31.8±5.32*</td>
<td>44.14</td>
<td>10.28±2.97</td>
<td>2.89±0.80</td>
</tr>
<tr>
<td>PO (10g/kg/diet)</td>
<td>71.5±2.9</td>
<td>135.8±18.2</td>
<td>64.3±7.2***</td>
<td>89.9</td>
<td>12.0±3.6</td>
<td>5.35±1.33***</td>
</tr>
<tr>
<td>PO (20g/kg/diet)</td>
<td>69.9±3.5</td>
<td>132.7±19.7</td>
<td>62.8±6.1**</td>
<td>89.8</td>
<td>11.55±2.3</td>
<td>5.43±1.03***</td>
</tr>
<tr>
<td>EX (100mg/kg)</td>
<td>70.4±2.3</td>
<td>125.11±17.7</td>
<td>54.7±6.7</td>
<td>77.71</td>
<td>11.12±3.39</td>
<td>4.9±1.77***</td>
</tr>
<tr>
<td>EX (200mg/kg)</td>
<td>71.8±2.7</td>
<td>131.7±21.7</td>
<td>59.99±7.31*</td>
<td>83.55</td>
<td>12.0±4.1</td>
<td>4.9±1.88***</td>
</tr>
</tbody>
</table>

Each value is the mean± SD of 5 rat. Significant with control group *p<0.05 ** P<0.01

Food efficiency ratio of (+ve) control was (2.89), the highest significant were Vitellaria Paradoxa powder at level (20g) and (10g) recorded (5.43 and 5.35) and alcoholic aqueous extract. These results approved with (Ozlem et al., 2005) who studied that, body weight was significant lower in groups with streptozotocin while administration glibornuide increased body weights in the diabetic groups.

Administration of streptozotocin to normal rats resulted in a significant increase in serum total cholesterol, triglyceride and LDL-cholesterol levels as shown in diabetic control Table (2), the results showed...
that diabetic groups receiving powder and alcoholic aqueous extract of *Vitellaria Paradoxa* had significantly lower levels of serum total cholesterol, triglyceride and LDL-cholesterol levels than those of diabetic control group.

Concerning total cholesterol, data revealed that the groups treated with powder and alcoholic aqueous extract of *Vitellaria Paradoxa* decrease significantly of total cholesterol levels in comparing with diabetic control (110.0mg/dl). The highest significant P<0.01 in rats treated with *Vitellaria Paradoxa* PO at levels (20 & 10g), extract (200 & 100 mg), were (68.4, 76.8, 77.0 and 80.8mg/dl) respectively. Results in Table (2), indicated that all the test groups diabetic receiving powder and alcoholic aqueous extract of *Vitellaria Paradoxa* revealed significant decreases in triglyceride and LDL-cholesterol levels in comparing with diabetic control.

Harnafi et al., (2009) found that *Vitellaria Paradoxa* caused a significant decrease on total cholesterol, triglyceride, LDL-c, significant increase in HDL-c for diabetic rats receiving *Vitellaria Paradoxa* (compared with diabetic control (23.0mg/dl). It was no significant differences in VLDL-c of the diabetic groups. Results indicated that *Vitellaria Paradoxa* showed decrease in atherogenic indexes (CHO / HDL_c and LDL_c / HDL_c) than those of diabetic control group. These results are in accordance with those found by **Harnafi et al.,** (2018).

Vitellaria Paradoxa aqueous extract displayed a very high antioxidant power and hypolipidaemic (Amrani et al., 2016 and Bravo et al., 2008).

Table (2): Effect of powder and alcoholic aqueous extract of Vitellaria Paradoxa on serum lipids pattern of diabetic rats.

<table>
<thead>
<tr>
<th>Groups Treated with Vitellaria Paradoxa</th>
<th>T.C (mg/dl)</th>
<th>TG (mg/dl)</th>
<th>HDL-c (mg/dl)</th>
<th>LDL-c (mg/dl)</th>
<th>VLDL-c (mg/dl)</th>
<th>Cholesterol / HDLc</th>
<th>LDL / HDLc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control - ve</td>
<td>77.0±9.08</td>
<td>90.6±9.8</td>
<td>38.0±1.5</td>
<td>23.6±5.7</td>
<td>18.12</td>
<td>2.02</td>
<td>0.62</td>
</tr>
<tr>
<td>Diabetic control</td>
<td>110.0±9.82</td>
<td>175.6±13.76</td>
<td>23.0±4.69</td>
<td>40.8±17.97</td>
<td>35.12</td>
<td>4.78</td>
<td>1.77</td>
</tr>
<tr>
<td>T.C (10g/kg/diet)</td>
<td>76.80±5.63**</td>
<td>100.6±8.2**</td>
<td>33.3±2.1**</td>
<td>28.20±4.81**</td>
<td>20.12</td>
<td>0.76</td>
<td>0.84</td>
</tr>
<tr>
<td>PO (20g/kg/diet)</td>
<td>68.4±14.7**</td>
<td>94.3±7.1**</td>
<td>34.0±2.34**</td>
<td>26.7±5.9**</td>
<td>18.86</td>
<td>2.01</td>
<td>0.78</td>
</tr>
<tr>
<td>EX (100mg/kg)</td>
<td>80.8±5.33*</td>
<td>115.0±11.78*</td>
<td>31.3±4.0**</td>
<td>36.60±2.96</td>
<td>23.0</td>
<td>2.58</td>
<td>1.16</td>
</tr>
<tr>
<td>EX (200mg/kg)</td>
<td>77.0±11.4**</td>
<td>96.8±9.8**</td>
<td>32.0±2.34**</td>
<td>30.9±7.6</td>
<td>19.36</td>
<td>2.4</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Each value is the mean± SD of 5 rats. Significant with control group *p<0.05 ** P<0.01

Data in table (3) revealed a significant decrease (P<0.01) and (p< 0.05) in ALT level for diabetic rats receiving *Vitellaria Paradoxa* compared with diabetic rats, and significant decrease in AST Therefore, it is possible to suggest that powder and extract protect against diabetic which improve AST and ALT levels in treated diabetic groups. Concerning urea and creatinine, were significantly decreased. It was noticed that a significant decrease (P<0.01) and (p< 0.05) in uric acid levels of diabetic groups treated with powder and alcoholic aqueous extract of *Vitellaria Paradoxa* when compared with diabetic control. On the other hand, it was found that significant increase in bilirubin for control diabetic rats caused this ratio, by about 2 folds than that the group treated with powder and aqueous extract of *Vitellaria Paradoxa*. It was suggested that antioxidant activity of the extract better compared to (non-diabetic) (Sushruta et al., 2006). These results of treatment effects of *Vitellaria Paradoxa* leaves or alcoholic aqueous extracts on some renal function represented in creatinine, uric acid, bilirubin. Extract improve the structural and function alintegrities of blood cells, liver and kidney.

Data in table (4) revealed a significant elevation in fasting blood glucose and significant decrease in plasma insulin level of diabetic control when compared with all the rats, plasma insulin in groups treated with powder and alcoholic aqueous extract of *Vitellaria Paradoxa* exhibited high levels of insulin in comparing with diabetic control (4.8Uu/ml). The groups treated with *Vitellaria Paradoxa* powder had (9.01 and 9.51Uu/ml) *Vitellaria Paradoxa* extract had significant increase (7.3 and 7.2 UU/ml) respectively.

As evident from Table (4) significant decrease in fasting blood glucose was observed in the diabetic groups treated with powder and alcoholic aqueous extract of *Vitellaria Paradoxa* when compared with diabetic control. Rats with diabetes induced by streptozotocin (Heibashy, 2005) or alloxan (Ye et al., 2002), reduced fasting blood glucose and HbA1C when rats fed on the tested therapeutic plant origins (Lima et al., 2006 and Eidi and Eidi, 2009). Free
radicals and the associated oxidative stress play an important role in the cause and subsequent complication of diabetes mellitus.

Table (3): Effect of powder and alcoholic aqueous extract of *Vitellaria Paradoxa* on serum ALT, AST, urea, creatinine, uric acid and bilirubin of diabetic rats

<table>
<thead>
<tr>
<th>Groups Parameters</th>
<th>ALT (Iu/ml)</th>
<th>AST (Iu/ml)</th>
<th>Urea (mg/dl)</th>
<th>Creatinine (mg/dl)</th>
<th>Uric Acid (mg/dl)</th>
<th>Bilirubin (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control -ve</td>
<td>12.6 ± 5.85</td>
<td>28.40 ± 4.8</td>
<td>12.2 ± 2.9</td>
<td>0.8 ± 0.10</td>
<td>2.8 ± 0.38</td>
<td>0.45 ± 0.03</td>
</tr>
<tr>
<td>Diabetic control</td>
<td>30.8 ± 4.29</td>
<td>45.4 ± 3.50</td>
<td>29.70 ± 3.2</td>
<td>2.64 ± 0.15</td>
<td>4.04 ± 0.58</td>
<td>1.0 ± 0.03</td>
</tr>
<tr>
<td>Treated with Vitellaria Paradoxa PO (10g/kg/diet)</td>
<td>26.2 ± 7.2</td>
<td>29.4 ± 2.96*</td>
<td>24.2 ± 3.32*</td>
<td>1.86 ± 0.43**</td>
<td>2.8 ± 0.5**</td>
<td>0.55 ± 0.09**</td>
</tr>
<tr>
<td>Treated with Vitellaria Paradoxa PO (20g/kg/diet)</td>
<td>21.4 ± 7.4**</td>
<td>26.0 ± 3.93**</td>
<td>23.7 ± 2.6**</td>
<td>1.7 ± 0.11**</td>
<td>2.54 ± 0.6**</td>
<td>0.44 ± 0.06**</td>
</tr>
<tr>
<td>Treated with Vitellaria Paradoxa EX (100mg/kg)</td>
<td>25.1 ± 6.2</td>
<td>38.9 ± 6.1</td>
<td>25.1 ± 3.7</td>
<td>2.1 ± 0.18</td>
<td>2.94 ± 0.35*</td>
<td>0.53 ± 0.08**</td>
</tr>
<tr>
<td>Treated with Vitellaria Paradoxa EX (200mg/kg)</td>
<td>24.8 ± 3.1*</td>
<td>34.7 ± 8.2</td>
<td>23.25 ± 2.4**</td>
<td>1.9 ± 0.08</td>
<td>2.7 ± 0.7*</td>
<td>0.47 ± 0.07**</td>
</tr>
</tbody>
</table>

Each value is the mean± SD of 5 rats. Significant with control group *p< 0.05 ** P< 0.01

Table (4): Effect of powder and alcoholic aqueous extract of *Vitellaria Paradoxa* on blood glucose, plasma insulin of diabetic rats

<table>
<thead>
<tr>
<th>Groups Parameters</th>
<th>Insulin (u l)</th>
<th>Fasting blood glucose (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control -ve</td>
<td>12.6 ± 1.85</td>
<td>113.40 ± 15.8</td>
</tr>
<tr>
<td>Diabetic control</td>
<td>4.8 ± 0.99</td>
<td>329.4 ± 63.50</td>
</tr>
<tr>
<td>Treated with Vitellaria Paradoxa PO (10g/kg/diet)</td>
<td>9.01 ± 1.2**</td>
<td>228.14 ± 35.7*</td>
</tr>
<tr>
<td>Treated with Vitellaria Paradoxa PO (20g/kg/diet)</td>
<td>9.51 ± 1.1**</td>
<td>209.4 ± 42.96**</td>
</tr>
<tr>
<td>Treated with Vitellaria Paradoxa EX (100mg/kg)</td>
<td>7.33 ± 2.2*</td>
<td>268.9 ± 46.1</td>
</tr>
<tr>
<td>Treated with Vitellaria Paradoxa EX (200mg/kg)</td>
<td>7.22 ± 2.4*</td>
<td>255.7 ± 48.2</td>
</tr>
</tbody>
</table>

Each value is the mean± SD of 5 rats. Significant with control group *p< 0.05 ** P< 0.01

Data in table (5) revealed decrease significantly in malondialdehyde (MDA) and a significant elevation in (SOD) and glutathione (GSH) levels were observed in the diabetic groups treated with *Vitellaria Paradoxa* powder and alcoholic aqueous extract when compared with diabetic control.

As evident from Table (5) significant decrease p< 0.05 in malondialdehyde (MDA) were observed in *Vitellaria Paradoxa* powder (20g) when compared with diabetic control was 19.2±0.8 increase significantly P< 0.001 in superoxide dismutase (SOD) in all treated groups when compared with diabetic control was 0.26.

Concerning glutathione (GSH), revealed increase significantly in all treated groups in comparing with diabetic control 4.22. These results are in agreement with (El-Sheikh 2008; Rana and Soni 2008 and Dasgupta et al., 2014). Rats fed with *Vitellaria Paradoxa* powder improve activities of liver enzymes, such as (SOD) and (GSH-Px), (Vitaglione et al., 2014).

Level of MDA increased in diabetic non treated group when compared to groups treated with extract and with normal control group (Wilson et al., 2001 and Ugwu et al., 2013) studied the lipid peroxides concentration which increased in diabetic rats kidney.

The results of SOD and CAT activities clearly showed that *Vitellaria Paradoxa* powder and extract contain a free radical scavenging activity, caused by the presence of •O2- and OH*. This action, predominantly due to the extract, could involve
mechanism related to scavenging activity (Roberto et al., 2003).

Pathological examination of rats liver showed that diabetic control induced focal hepatic necrosis associated with inflammatory cells infiltration Pic. (2). The liver of the (normal control group) rats showing the normal histological structure of hepatic lobule. The liver of the diabetic rat treated with Vitellaria Paradoxa (10g/kg) powder showing few leucocytes in hepatic sinusoids Pic. (3). The liver of, diabetic rat treated with Vitellaria Paradoxa (20g/kg) showing slight activation of kupffer cells Pic. (4). The liver of the diabetic rat treated of Vitellaria Paradoxa extract (100mg/kg) showing no histopathological changes Pic. (5). The liver of the, diabetic rat treated with Vitellaria Paradoxa (200mg/kg) showing cytoplasmic vacuolization of hepatocytes, hepatoportal blood vessel Pic. (6).

Indicating the induction was successful and there were no reversions. Lipid peroxide-mediated tissue damage has been observed in the development of both types 1 and 2 Diabetes (Stanely et al., 2017). In conclusion, the study showed that treatment with powder and alcoholic aqueous extract of Vitellaria Paradoxa, can traditional use in the management of diabetes and cardiovascular diseases.

Table (5): Effect of powder and alcoholic aqueous extract of Vitellaria Paradoxa on some blood antioxidant levels

<table>
<thead>
<tr>
<th>Groups Parameters</th>
<th>MDA (U/mL)</th>
<th>SOD (mg/L)</th>
<th>GSH (U/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control –ve</td>
<td>11.26±1.4</td>
<td>0.54±0.12</td>
<td>9.27±0.6</td>
</tr>
<tr>
<td>Diabetic control</td>
<td>19.2±0.8</td>
<td>0.26±0.09</td>
<td>4.22±1.54</td>
</tr>
<tr>
<td>Treated with Vitellaria Paradoxa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO (10g/kg/diet)</td>
<td>14.0±1.2</td>
<td>0.67±0.05***</td>
<td>6.25±0.03*</td>
</tr>
<tr>
<td>PO (20g/kg/diet)</td>
<td>12.5±1.7*</td>
<td>0.75±0.2***</td>
<td>7.7±0.88**</td>
</tr>
<tr>
<td>EX (100mg/kg)</td>
<td>15.6±0.9</td>
<td>0.63±0.08***</td>
<td>6.16±0.69*</td>
</tr>
<tr>
<td>EX (200mg/kg)</td>
<td>14.5±1.2</td>
<td>0.66±0.12***</td>
<td>6.66±0.77*</td>
</tr>
</tbody>
</table>

Each value is the mean+ SD of 5 rats. Significant with control group *p< 0.05, ** P< 0.01, ***p< 0.001.
MDA: malondialdehyde SOD: superoxide dismutase GSH: glutathione
References

42. Lagourni, V. and Nisteropoulou, E. (2009). Antioxidant properties of O. onites, T. vulgaris and O. basilicumspicies grown in Greece and
their total phenol and rosmarinic acid content. Journal of Food Lipids, 16: 484-498.

