Evaluation of Bone Density after Bone Condensation around Immediate Loaded Dental Implants using Different Techniques

Amira Ahmed Mohamed Mohamed Attia1*, Wael Mohamed Said Ahmed2, Mai Ahmed Haggag3, Mohamed Abdel-Moniem Tawfik4

1Teaching assistant at oral and maxillofacial surgery, Faculty of dentistry - Mansoura University, Mansoura Egypt
2Assistant professor of Oral and Maxillofacial Surgery, Faculty of Dentistry - Mansoura University, Mansoura Egypt
3Lecturer of Oral and Maxillofacial Surgery Faculty of Dentistry - Mansoura University, Mansoura Egypt
4Professor & Head of Oral and Maxillofacial Surgery, Faculty of Dentistry - Mansoura University, Mansoura Egypt

Emails: sweety_amira6@hotmail.com, drwaelmohamed2020@gmail.com, drmaihiaggag5@gmail.com, memotaw2002@gmail.com

Abstract: Objectives: The purpose of this study was to assess the bone density changes around immediate loaded dental implants after bone condensation with different techniques. Materials and Methods: Twenty-one implants were inserted in 14 female patients with missing maxillary posterior teeth. Patients were randomly divided according to the method of osseoconcentration into three equal groups. Group I: The osseodensification technique was performed by densah burs, which followed by immediate implantation. Group II: Bone expander technique was used and followed by immediate implantation. Group III: Conventional surgical drilling technique was used and followed by immediate placement of implant with progressive threads design. Implant stability was clinically assessed at three and six months post-operatively. Moreover, Peri-implant Probing Depth (PPD) and Modified Sulcus Bleeding Index (mSBI) were evaluated at three and six months post-operatively. For radiographic assessment of bone density, CBCT was obtained preoperatively, and immediately postoperative. All clinical and radiographic data were subjected to statistical analysis. Results: Regarding implant stability, PPD and mSBI, no statistically significant difference was found between the three groups. The immediate postoperative bone density showed significant increase in the three groups when compared with the preoperative bone density. Conclusion: Bone density measurements increased postoperatively as a result of bone compression around the placed implants, which is important especially in areas of poor bone quality as the posterior maxilla for enhancing the initial implant stability.

Keywords: bone condensation; densah burs; bone expanders; implant with progressive threading.

1. Introduction:
Implant treatment in maxillary ridge offers greater challenges and successful implant therapy depends on adequate bone quality and quantity. Clinical studies have shown lower survival rates of implants placed in maxilla which can be attributed to poor bone quality or availability of less dense bone. Bone quality is the poorest in edentulous posterior maxilla compared with any other intraoral region. Concerning Lekholm and Zarb classification, the posterior maxilla usually composed of type IV bone quality with thin cortical plate and fine loose trabecular cancellous bony core.

Such a problem could negatively influence the histomorphometric parameters (such as bone to implant contact percentage and bone volume percentage) and, consequently, both primary and secondary implant stabilities. This problem can be managed by condensation of the bone which significantly increases bone density in peri-implant area in relation to standard surgical technique. Threaded bone expanders are hand (finger pressure or a ratchet) or motor-driven tools used to create bone expansion by screwing into bone instead of tapping with a mallet. They are a series of implant-shaped instruments with increasing diameters used to prepare the implant site by compressing the bone.
apico-laterally, thereby increasing the bone density locally.\(^{(8)}\)

For the placement of endosteal fixtures, a drilling technique called osseodensification was implemented. Osseodensification is done in an attempt to develop a simplified autographing around the implant, making it useful in areas of poor bone quality.\(^{(9,10)}\) Unlike traditional drilling protocols (which we refer to as subtractive drilling), osseodensification increases primary stability with non-subtractive drilling due to densification of the drilled osteotomy site walls centrifugally.\(^{(9)}\)

A series of new thread designs of the dental implants have been proposed to better stabilize the implant in the bone. Implant macro- and microtopographies have been introduced on the market\(^{(11,12)}\), for reducing bone healing times, accelerating, and enhancing the osseointegration.\(^{(13)}\)

Implants with knife-edge threads appear to be the best option for clinically challenging situations (such as areas of low bone quality or immediate loading protocols).\(^{(14)}\)

Based on the aforementioned data, it is believed to be of interest to evaluate the bone density around immediate loaded dental implants after bone condensation with different techniques using; bone expanders, densah burs and implant with progressive threads design when inserting dental implants in the maxillary posterior region.

2. Patients and methods:

1. Patients selection
 - Twenty-one implants were inserted in patients selected from the Outpatient Clinic of the Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Mansoura University who needed for replacement of missing maxillary posterior teeth with dental implant.
 - The inclusion criteria were: adult patients (age between 18 to 45 years), who needed one or more dental implants in the posterior maxilla, adequate occlusion and patient cooperation.
 - The exclusion criteria were patients with systemic or local diseases that contraindicate surgery or implant placement, pregnancy, any bone disease that interfere with bone healing, smokers and parafunctional habits such as bruxism and clenching.
 - The patients were informed about the study, and written consent was obtained from each patient.

2. Preoperative Evaluation
 Each patient was investigated clinically and radiographically. CBCT was used to accurately assess the bone volume (height/width) available for implant placement and to measure the bone density in the site of implant placement (to be compared with the immediate post-operative density).

3. Study design:
 21 implants were randomly divided according to the method of osseocoondensation into three equal groups. Group I: performed by osseodensification technique using densah burs, followed by immediate implantation. Group II: performed by bone expander’s technique, followed by immediate implantation. Group III: performed by conventional surgical drilling technique followed by placement of implant with progressive threads design.

4. Materials:
 - Densah bur kit (Densah®, Versah, LLC, Jackson, Michigan); consists of 12 burs to create the desired osteotomy diameter for all major dental implants on the market. These surgical autoclavable burs are designed to be used with standard surgical engines with drill speed 800-1500 rpm in a counter clockwise (reverse) direction (densifying mode).
 - Bone Expander kit (MCT Bone Expander (Mr. Currete Tech.), South Korea): The set consists of five incrementally enlarged expanders with a sharp terminal end. These are surgical autoclavable manual threaded bone expanders, which are tapered to insert wide range of implant systems.
 - Dental Implants:
 - For group I and II: conventional, two pieces, screw type titanium dental implants (Neo Biotech, Korea) were used.
 - For group III: two-pieces, titanium Jdental Care (Jdental Care, Moderna, Italy) dental implants were used.

5. Implant placement:
 The study was conducted by the same surgeon, who performed all the surgeries. All surgical procedures were done under complete aseptic condition. Prophylactic antibiotic was prescribed (2 gm Amoxicillin (Emox, Egyptian Int. Pharmaceutical Industries Co., E.I.P.I.C.O., A.R.E.) one hour before the surgery). Chlorhexidine (Orovex, contain Chlorhexidine Manufactured by MARCO Group Pharmaceuticals, Egypt) mouth wash was used for one minute just prior to surgery.

 Local anesthesia was achieved using buccal infiltration injection (1.5 ml) together with palatal infiltration injection (0.3 ml). Paracrestal incision and elevation of the mucoperiosteal flap was done.

 For group I: The initial osteotomy was done using the pilot drill to the desired depth. The implant bed was widened using densah burs in small increments allowing bone condensation (Counterclockwise drill speed 800-1500 rpm with copious irrigation).

 For group II: The initial osteotomy was done using the pilot drill to the desired length then the smallest expander (Ø =2.6 mm) was inserted manually by Manual Knob and then being screwed in the
clockwise direction by Ratchet Wrench till the desired depth. Then the expander was turned into anti-clockwise direction and pulled out of the osteotomy site followed by next successive larger expanders till reaching the desired length and width that were planned.

For group III: conventional bone drilling according to the recommended protocols of the manufacturer.

After preparation of implant beds for all groups, the implants were slightly positioned subcrestally (0.5 to 1 mm), according to the recommendation of the manufacturer. The flap was repositioned and sutured around the healing abutments. After that open tray impressions were taken.

6. Postoperative phase:

Immediate post-operative CBCT was done to assess the relative bone density. Antibiotic (Emox, Egyptian Int. Pharmaceutical Industries Co., E.I.P.I.C.O., A.R.E.) was prescribed for 7 days. All patients were instructed to maintain oral hygiene, avoid chewing solid textured food, apply ice packs over the area for the first day and then warm packs for the following two days. After 7 days, sutures were removed.

7. Evaluation:

- Clinical evaluation:
 Implant stability was done immediate, 3 months and 6 months postoperatively. Periodontal pocket depth (PDD) and modified Sulcus Bleeding Index (mSBI) were done at 3 months and 6 months postoperatively.

- Radiographic evaluation:
 CBCT was used for the evaluation of relative bone density surrounding the dental implants before the operation and immediately postoperatively. All patients’ scans were taken by a Planmeca ProMax® 3D unit (Planmeca OY, Helsinki, Finland) using fixed imaging parameter at every scan. All DICOM data were then analyzed using On Demand3D software.

Bone Density Recording:

- For all edentulous area planned for an implant placement operation grayscale values were measured. Using the greyscale bone measuring tool, all the density records were collected from the bucco-palatal view of the cross-sectional plane.

- For every implant site, six different records were taken. For recording the exact position of the implant fixture and to maximize the accuracy of the measurements on the preoperative measurements; the records were collected on the postoperative CBCT firstly with the implant already positioned in its place.

- Measurements were taken in a parallel manner away from the implant fixture by 1 mm. Three readings in the buccal side (coronal, middle and apical thirds) of the implant fixture and then three readings in the palatal side (in the same way).

- Using the measurement tool preoperative CBCT were then collected in the same way after calculating the location of the implant. By the same examiner, all preoperative and post-operative locations were re-measured and the average of the two measurements were considered. The mean grayscale values in the same section were analyzed and bone densities from both tomographs were compared.

Statistical Analysis

Data were tabulated, coded then analyzed using the computer program SPSS (Statistical package for social science) version 23.0.

3. Results:

This study sample included 21 implants placed in 14 female patients. Five patients in group I, four patients in group II and seven patients in group III. The age of the patients, ranged between 21 and 36 years. All implants exhibited successful signs of osseointegration except one implant in group II (Expanders) showed clinical mobility just one month postoperatively and this implant was replaced by another one in a new patient.

Clinical results:

- Implant stability: as shown in table (1) the assessment of implant stability immediately postoperative as well as along the evaluation intervals; there was no statistical significant difference between the three groups \(p>0.05 \).

4. In group I

Implant stability of 3 months postoperative \((74.00 \pm 4.58) \) showed non significant difference \(p=0.69 \) compared to immediate postoperative \((75.14 \pm 5.49) \), while implant stability values of 6 months postoperative \((81.00 \pm 5.77) \) showed significant increase when compared to immediate postoperative values \(p=0.04 \), and to 3 months postoperative values \(p=0.005 \).

4. In group II

Implant stability of 3 months postoperative \((68.00\pm 7.94) \) showed significant decrease \(p=0.049 \) compared to immediate postoperative values \((74.86 \pm 3.80) \), while 6 months postoperative values \((78.71 \pm 3.77) \) showed significant increase when compared to immediate postoperative \(p=0.041 \), and to three months postoperative values \(p=0.001 \).

4. In group III

Implant stability of 3 months postoperative \((73.86 \pm 5.40) \) showed significant decrease \(p=0.002 \) compared to immediate postoperative values \((75.43 \pm 5.83) \), while 6 months postoperative values \((79.00 \pm 6.68) \) showed significant increase when compared to
immediate postoperative values (p=0.005), and to 3 months postoperative values (p= 0.003).

Table (1): Assessment of implant stability of the three groups immediate postoperative and along the evaluation intervals shows no significant difference between the studied groups at any time intervals (p>0.05)

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ±SD</td>
<td>Mean ±SD</td>
<td>Mean ±SD</td>
<td></td>
</tr>
<tr>
<td>Immediate post operative (PO)</td>
<td>75.14 ±5.49</td>
<td>74.86 ±3.80</td>
<td>75.43 ±5.83</td>
<td>0.97</td>
</tr>
<tr>
<td>3M PO</td>
<td>74.00 ±4.58</td>
<td>68.00 ±7.94</td>
<td>73.86 ±5.40</td>
<td>0.14</td>
</tr>
<tr>
<td>6M PO</td>
<td>81.00 ±5.77</td>
<td>78.71 ±3.77</td>
<td>79.00 ±6.68</td>
<td>0.7</td>
</tr>
<tr>
<td>P*</td>
<td>0.018*</td>
<td>0.002*</td>
<td>0.013*</td>
<td></td>
</tr>
<tr>
<td>Pi</td>
<td>0.69</td>
<td>0.049*</td>
<td>0.002*</td>
<td></td>
</tr>
<tr>
<td>Pi</td>
<td>0.04*</td>
<td>0.041*</td>
<td>0.005*</td>
<td></td>
</tr>
<tr>
<td>Pi</td>
<td>0.005*</td>
<td>0.001*</td>
<td>0.003*</td>
<td></td>
</tr>
</tbody>
</table>

Data expressed as mean±SD
SD: standard deviation P: Probability*: significance <0.05
Test used: One way ANOVA for P* & Student’s t-test (Paired) for P*.
Pi: significance between immediate & 3 month PO. Pi: significance between immediate & 6 month PO.
Pii: significance between 3 month PO & 6 month PO. P*: significance in the same group.
P*: significance between the three group. PO: postoperative.

- **Peri-implant pocket depth (PPD):** As shown in table 2 there was no significant difference between the studied groups regarding PPD either at 3 months or 6 months postoperative (p>0.05).

 - **In the buccal aspect:**
 Values of PPD at 6 months postoperative [1.0 (0.0-1.0)] showed no significant difference (p= 0.08) when compared to 3 months [1.0 (0.0-1.0)] postoperative within group I, while in group II and III values at 6 months postoperative [2.0 (1.0-2.0) and 1.0 (0.0-2.0) respectively] showed significant increase (p=0.025) when compared to 3 months postoperative values [1.0 (0.0-1.0) and 0.0 (0.0-1.0) respectively].

 - **In the palatal aspect:**
 In group I and III 6 months postoperative values [0.0 (0.0-1.0) and 1.0 (0.0-1.0) respectively] showed no significant difference (p> 0.05) when compared to 3 months postoperative values [0.0 (0.0-1.0) and 0.0 (0.0-1.0) respectively]. While in group II 6 months postoperative values [1.0 (1.0-2.0)] showed no significant difference (p= 0.08) when compared to 3 months [1.0 (1.0-1.0)] postoperative values.

 - **In the distal aspect:**
 In group II and III 6 months postoperative values [1.0 (0.0-1.0) and 1.0 (0.0-2.0) respectively] showed no significant difference (p> 0.05) when compared to 3 months postoperative [0.0 (0.0-1.0) and 0.0 (0.0-1.0) respectively]. While in group III there was significant increase at 6 months [1.0 (0.0-1.0)] when compared to 3 months [0.0 (0.0-1.0)] postoperative (p= 0.046).

Table (2): Assessment of PPD of the studied groups at 3 months and 6 months postoperatively shows no significant difference between the three groups at any time intervals (p>0.05)

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Range</td>
<td>Median</td>
<td>Range</td>
</tr>
<tr>
<td>Buccal</td>
<td>3M PO</td>
<td>.0</td>
<td>0.0-1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>6M PO</td>
<td>1.0</td>
<td>0.0-2.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>P*</td>
<td>0.08</td>
<td>.025*</td>
<td>.025*</td>
</tr>
<tr>
<td>Palatal</td>
<td>3M PO</td>
<td>.0</td>
<td>0.0-1.0</td>
<td>.0</td>
</tr>
<tr>
<td></td>
<td>6M PO</td>
<td>.0</td>
<td>0.0-1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>P*</td>
<td>1.00</td>
<td>0.046*</td>
<td>.046*</td>
</tr>
<tr>
<td>Distal</td>
<td>3M PO</td>
<td>.0</td>
<td>0.0-1.0</td>
<td>.0</td>
</tr>
<tr>
<td></td>
<td>6M PO</td>
<td>1.0</td>
<td>0.0-1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>P*</td>
<td>0.15</td>
<td>0.08</td>
<td>0.046*</td>
</tr>
<tr>
<td>Mesial</td>
<td>3M PO</td>
<td>1.0</td>
<td>0.0-1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>6M PO</td>
<td>1.0</td>
<td>1.0-2.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>P*</td>
<td>0.025*</td>
<td>0.08</td>
<td>0.025*</td>
</tr>
</tbody>
</table>
• Modified Sulcus Bleeding Index (mSBI): As shown in table 3 there was no significant difference between different study groups regarding mSBI values either at 3 months or 6 months postoperatively (p> 0.05).

• In the buccal aspect, values at 6 months postoperative showed no significance (p> 0.05) when compared to values at 3 months postoperative within group I, II and III.

• Also similar results were shown in mesial, distal and palatal aspect.

Table (3): Assessment of mSBI of the studied groups at 3 months and 6 months postoperatively shows no significant difference between the three groups at any time intervals (p>0.05).

| Table 3 | Group I | Group II | Group III | p<
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Range</td>
<td>Median</td>
</tr>
<tr>
<td>Buccal</td>
<td>.0</td>
<td>.0-1.0</td>
<td>.0</td>
</tr>
<tr>
<td>3M PO</td>
<td>.0</td>
<td>.0-1.0</td>
<td>.0</td>
</tr>
<tr>
<td>6M PO</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Mesial</td>
<td>.0</td>
<td>.0-1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3M PO</td>
<td>1.0</td>
<td>.0-1.0</td>
<td>.0</td>
</tr>
<tr>
<td>6M PO</td>
<td>0.15</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Distal</td>
<td>.0</td>
<td>.0-1.0</td>
<td>.0</td>
</tr>
<tr>
<td>3M PO</td>
<td>0.08</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>6M PO</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0-1.0</td>
</tr>
<tr>
<td>Palatal</td>
<td>.0</td>
<td>.0-1.0</td>
<td>.0</td>
</tr>
<tr>
<td>3M PO</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>6M PO</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Radiographic result:
1. From the palatal aspect: The relative preoperative bone density showed no significance difference between the three groups (p=0.21). The relative postoperative bone density showed significant increase between the three groups (p=0.015) as shown in table 4.

2. From the buccal aspect: The relative preoperative bone density showed no significance difference between the three groups (p=0.23). The relative postoperative bone density showed significant increase between the three groups (p<0.001) as shown in table 5.

Table (4): Assessment of palatal bone density of the studied groups preoperative and immediately postoperative.

| Table 4 | Group I | Group II | Group III | p<
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ±SD</td>
<td>Mean ±SD</td>
<td>Mean ±SD</td>
</tr>
<tr>
<td>Palatal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre operative</td>
<td>312.57 ± 51.28</td>
<td>336.48 ± 85.15</td>
<td>393.76 ± 109.69</td>
</tr>
<tr>
<td>Post operative</td>
<td>639.62 ± 128.77</td>
<td>704.86 ± 116.66</td>
<td>846.05 ± 116.33</td>
</tr>
<tr>
<td>P<</td>
<td>0.002*</td>
<td><0.001*</td>
<td><0.001*</td>
</tr>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table (5): Assessment of buccal bone density of the studied groups preoperative and immediately postoperative.

| Table 5 | Group I | Group II | Group III | p<
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ±SD</td>
<td>Mean ±SD</td>
<td>Mean ±SD</td>
</tr>
<tr>
<td>Buccal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre operative</td>
<td>338.00 ± 93.12</td>
<td>324.95 ± 72.76</td>
<td>404.62 ± 100.13</td>
</tr>
<tr>
<td>Post operative</td>
<td>540.14 ± 79.99</td>
<td>813.43 ± 221.39</td>
<td>918.67 ± 81.75</td>
</tr>
<tr>
<td>P<</td>
<td>0.002*</td>
<td><0.001*</td>
<td><0.001*</td>
</tr>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case presentation of dental implant with progressive threading (group III)

Figure 1: Occlusal views showing missing 1st premolar

Figure 2: Preoperative CBCT (panoramic view)

Figure 3: Implant after placement.

Figure 4: Immediate postoperative CBCT.

Figure 5: The final restoration.

4. Discussion:

The clinical success of dental implants depends mainly on the implant becoming osseointegrated with the surrounding bone. Conventional clinical guidelines proposed by Branemark recommended implant placement in healed bony sites, followed by a stress free healing period of 3 to 6 months prior to functional loading. However, other clinical protocols such as immediate and early loading protocols have been demonstrated later to decrease the overall treatment period for the benefit of the patients. Therefore, the current study was designed to examine the quality of immediately loaded dental implants in the posterior maxilla with a single tooth replacement.

In the current study, assessment of bone densities were accomplished by comparing the three groups of
patients with immediate loading protocol before the surgery and immediately postoperative. As well as comparing implant stability, PPD and mSBI. The purpose of this study was to allow patients to benefit as soon as possible after surgery also to achieve positive outcomes at the same time. The present study showed that there were no significant statistical differences between the three groups regarding implant stability, PPD and mSBI.

Gjetvold et al. have evaluated the clinical outcomes following immediate loading of single tooth implants in the maxillary posterior region and suggested that single implants in the maxilla can achieve satisfactory results which was in agreement with the current study.\(^{18}\)

Immediately loaded implant studies are often founded on implant survival rates. In our study, only one implant failure after one month was recorded in group II (bone expander) and this was because the patient had recent bruxism after implant insertion. This is in agreement with MA Abdelkarim et al \(^{19}\) who used bone expander technique but with delayed loading. Fracture of the implant or the superstructure and loss of osseointegration may result from overloading.\(^{20}\)

Regarding implant stability, the present study reported that there was no significant difference between the three groups along the evaluation intervals. This showed that there was no significant change in ISQ over time between the three groups which was in agreement with several studies.\(^{21,22}\)

In the bone expanders group and the progressive threading implants group there were decrease in the implant stability in the three months follow up period compared to the immediate postoperative one and then increased in the six months follow up period. This may be attributed to the induced fractures of the trabeculae that caused in both bone expander and conventional drilling groups and that requiring remodeling time and delayed secondary implant stability.\(^{23}\)

Kim and colleagues\(^{24}\) noted that the values of the primary stabilities of the immediately loaded dental implants placed in the posterior maxilla with single unit restorations, were not predictable for the success of the dental implant. The authors reported that the ISQ values of the 3 immediately loaded implants had primary stability more than 60. Similarly Atieh and colleagues\(^{25}\) concluded that the primary stability measurements at the time of implant placement were not accurate to determine the stability of the immediately loaded implant protocols.

To overcome the low prognostic accuracy of RFA at implant placement time, it has been recommended that not only RFA measurement should be considered before immediate implant loading but also it should be combined with other factors such as clinical parameters, radiographic evaluation, and insertion torque analysis.\(^{26}\)

In this study, for assurance of proper contacts in centric occlusion functional load was applied to the immediate - loaded implants. Cesaretti and colleagues \(^{27}\) also used similar technique. They found similar outcomes in posterior maxillary implants when applied functional immediate loading protocol. Similar results were also reported in which a non - functional loading with no occlusal contacts were used.\(^{28,29}\)

In the current study, in attempt to minimizing the excessive forces, the crowns were delivered within 2 days with light centric occlusion. The values of implant stability of the immediately loaded implants increased during the follow - up visits and at six months postoperatively higher ISQ values were observed. This results in agreement with Akoglan et al.\(^{30}\)

Regarding PPD, the results of this study showed that there was statistically significant increase in PPD from 3 months to 6 months postoperatively within each group. However, there was no significant difference between the three groups as regards to the PPD at different time intervals.

In this study, increased PPD values can be attributed to trauma from the surgery and reflecting full thickness mucoperiosteal flaps that leads to a more apically positioned junctional epithelium which is directly related to an increased probing depth around the implant.\(^{31}\) Maximum record in the three groups was 2 mm and this is still in the normal range of periodontal pocket depth (2.5 mm to 4 mm) around the dental implants.\(^{32}\)

In addition, our study reported that there was no significant difference between the three groups regarding the PPD at different time intervals. This is in accordance with Tsoukaki et al.\(^{33}\)

Regarding mSBI as a clinical indicator for presence or absence of inflammation, the present study demonstrated that there was no significant difference between the mSBI values of different time intervals of follow up within each group and there were no signs of inflammation, bleeding…. etc. detected during the follow up period. Moreover, there was no significant difference between the three groups regarding the mSBI values over the treatment time.

The CBCT has been reported to be a reliable tool of bone density measurement.\(^{33-35}\) Dual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) are typical methods of measuring bone mineral density.\(^{36}\) Hsu and colleagues,\(^{37}\) compared the effectiveness of dual-energy x-ray absorptiometry (DXA) and CBCT for assessing cortical bone density and strength in an experimental animal study. They stated that CBCT is accurate for the estimation of cortical bone fracture loads.\(^{37}\)
Parsa et al., compared bone density value in CT and CBCT and demonstrated a high correlation between voxel value of CBCT and CT number in multi slice computed tomography (MSCT).38

In this study, CBCT was used to assess the change in the bone density from the preoperative CBCT to postoperative one, not the accurate value of bone density and this in agreement with Elkhidir et al., who assured the feasibility of CBCT in evaluating bone density of dental implant placement sites.39

In this study there was increasing in the peri-implant bone density in the densah bur group along the evaluation intervals. This is in accordance with Pai et al.53

In the bone expanders group, there was increase in bone density from preoperative to postoperative. This was due to bone compaction in lateral and apical directions during preparation of the osteotomy site. This result was in agreement with Reddy et al.48

In this study, bone density assessments were measured in 3 regions (coronal, middle, and apical) in both buccal and palatal sides. By evaluating the average of the aforementioned regions, the effects of progressive threading dental implant and bone expanders technique on peri-implant bone densities were superior to densah bur technique.

The progressive threading design of dental implant increases the bone density as it applies apical and lateral compression to the surrounding bone, which produces a certain amount of osteocompression and also increases the primary stability.47, 41, 42 Based on the results of current study, the bone density increased in the studied groups from the preoperative records to immediate postoperative records without any statistically significant difference between the three groups. This might be due to the bone condensation techniques that had been used. This result was in accordance with MA Abdelkarim et al.19 who had only two groups; (conventional drilling group and bone expander group).

The postoperative peri-implant bone density measurements in this research of the crestal and middle regions were higher than that of apical region in the three groups. This might be due to the tapering of the inserted densah bur, bone expander and the progressive dental implants (having higher diameter in cervical and middle part than apical part).

Conclusion

Bone density measurements increased postoperatively as a result of bone compression around the placed implants, which is important especially in areas of poor bone quality as the posterior maxilla for enhancing the initial implant stability.

The variations in bone density can be accurately detected using CBCT. Therefore, CBCT is reliable to compare pre-operative and post-operative changes of bone quality during dental implant procedures.

Dental implants with progressive threading were superior in increasing bone density than using densah burs. While there was no difference between using bone expanders and implants with progressive threading regarding increasing bone density.

References:

31. Tsoukaki M, Kalpidis CD, Sakellari D, Tsalikis L, Mikrogiorgis G, Konstantinidis A. Clinical,
radiographic, microbiological, and immunological outcomes of flapped vs. flapless dental implants: a prospective randomized controlled clinical trial. Clinical oral implants research. 2013;24(9):969-76.

