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Abstract: In this paper, we extend the Class of Cesaro sequence spaces Ces[( pn), (qn )] introduced by Khan and

Rahman to a generalized Cesaro type spaces Ces[(an), (pn ), (qn)] defined by weighted means (a,), () and of

positive real number powers (p,) with inf p, > 0.We define a modular functional on this generalized Cesaro
n

sequence space and show that it is a complete paranomed space, and when equipped with the Luxemburg norm is a
Banach space, possessing H-property, is not rotund and therefore not locally uniformly rotund. [Journal of American

Science. 2010;6(10):7-12]. (ISSN: 1545-1003).
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Introduction

Let (X, |l|) be a real Banach space and let
B(X) (respe. S(X)) be the closed unit ball (resp. unit
sphere) of X.

A point X € S(X)is called an H-point of
B(X) if for any sequence (Xn), X, € B(X) such
that || X, ||>1 as N —> 00, the weak convergence

of X, to X, (Write x, ————>X ) implies that
|[x,— X [F>0as n—oo.

If every point of S(X) is an H-point of B(X);
then X is said to have H-property (Kadec-Klee). A

point X€ S(X) is called an extreme point of
B(X), if for anyy,Z€S(X), the equality

y+12

X=

implies y=z.

A Banach space X is said to be Rotund (R) if
for every point of S(X) is an extreme point of B(X).

A point X € S(X) is called a locally uniformly
rotund (LUR)-point, if for any sequence (X,)in
B(X) such that || X, + X ||— 2 as n—o, there holds
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that || X, — X |[— O as n—o. If every point of S(X)

is a LUR-point of B(X), then the space X is called
locally uniformly rotund (LUR). It is known that if X
is LUR, then it is rotund (R) and possesses property
(H). However the converse of this last statement is
not true in general. Bym, we denote the space of all
real or complex sequences and by N= {0, 1,2, ...}.

A linear topological space X over the real field
R is said to be a paranormed space if there is a sub

additive function g : X —> R such that

9(@) =0, g(-x)=g(X) and for any

sequence (X,) in X such that

g(x, —x)——=—>0, and any sequence
o) in R such that| . —a | —2—-0, we get
() n
g(a, X, —ax)——=—0 .

For these geometric notions and their role in
mathematics we refer to the monographs [1], [2], [3],
[4], and [5]. Some of these geometric properties were
studied for orlicz spaces in [9], [10], [11], and [12].

In [5], Sanhan and Suantai investigated some
geometrical properties

of Ces((p,)) defined by
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Ces((p,)) =
0 1 2n+171 pn
Xew:. —_— X < oo, foran
nZ:;‘ N+l k:zzl"l | y

bounded sequence (P, )of positive real numbers,
with inf p, >0.
n

In [6] Khan and Rahman, generalized the space
Ces((p,)) by defining the space Ces ((p,),(d,)).
for positive sequences (P,),(q,) of real numbers,

withinf p, > 0by Ces((p,).(q,)) =

onHl_ n
Xew: Z[ Zlqklka <oy,

2" k=2"
where Q, =0 + 0,0+t Oy -

Moreover they showed that Ces((p,).(q,))is a
paranomed space by the paranorm

g(x) = Z(Ql ZQk|XkJ <o,

n=0 on k=2"
where M =max{1,H}, and H =sup, P, <oo.

For a real vector space X, a function
o : X —[0,00]is called modular, if it satisfies the
following conditions:

(i)o(X)=0<=x=0, Vxe X

(ii) o(AX) = o(X) , for all 2 R with| 4| =1
(iiyo(IX+ ) <o(X)+o(y), VX, ye X,
VA,B>0: A+ B=1.

Further, the modular o is called convex if

(iv)
o(AX+ py) < lo(X) + Bo(y), VX, y e X,
V4,20, 1+ =1.

We now introduce a generalized modular
sequence space defined by weighted means.

Definition: let (a,),(q,)and (p,)be sequences of

positive real numbers with inf p, >0, we
n

http://www.americanscience.org

generalize the space Ces ((p, ), (,)) by defining
Ces((a,),(p,).(a,)) = {x € @: 5(Ax) < o0, for some A >0}

2m
, where o(X) = Z(a Z:qk|xk|)pn In the case
n=0 k=2"

when the sequence (P,)is bounded we can simply
write

Ces((a,).(p.). (A,)) =
2mi g
{X cw: Z(a Do ax )™ < oo}
k=2"
The Luxemburg norm on the sequence space
Ces((a,),(p,),(q,)) is defined for any
x € Ces((a,), (P, (a,)) by:
I x|l= inf{i >0:o*(%) Sl}.
Remarks:
(1) Taking
1
an
n+1
then Ces((a, ), (P,).(a,)) =Ces(p,) .

— 0, =1,Vnen.

1
(2)Takinga, =—,
271
whereQ,, = Oy + 0,0, F et Oyna s then

Ces((a,).(p,):(9,)) = Ces((p,). (ay,)) studied
by Khan and Rahman [13].

(3)Taking a, =i, a,
n+1

thenCes((a,),(p,),(d,))= Ces p studied by
Lim [8].

=1,p,=p ,Vnen,

Throughout this paper, the sequence (P, ) is
considered to be bounded withinf p, >0, and
n

letM =max{L,H},H =supp,.

For any bounded sequence of positive numbers (P, ),
we have
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|ak ‘|‘bk |pks ZWW(kal)
, where @, ,b, €R.
Lemma (1):

The functional o is convex modular

onCes[(a,),(p,).(g,)]

Proof: LetX,yeCes[(a,),(p,).(a,)]. 1t is
obvious that;

(i) o(X)=0<=x=0,

2n+1 1
(i) o(Ax) = Z(a qu | AX |) "=
n=0 k=2"
2"
ZMI @, 2.8 1% D" =0(x),
k=2"
w.| Al=1
(iif) Using the convexity of the function
t——|t|%, vk eN, we get
2n+1 1
o(Ax+ py) = Z(a qu | A%+ By, D
n=0 k=2"
® Mg 2" g P
<2 /l[an 20 | %, |J+ﬂ( 2 | Vi I)J
n=0 k=2" k=2"
= Ao (x)+ po(y).

for A, f>0with A+ g =1.

Lemma (2): For any X € Ces[(a,),(p,),(d,)]. the

functional o on Ces[(a,),(p,),(q,)] satisfies the
following properties:

(i) If 0<r<1, then r" o{éj <o(X)
ando(rx) <ro(x),
(ii) if r>1, then o(X) < r”a(éj,

(iii) if =1, then o(X) < ro(X) < o (rx).

Proof : (i) For 0<r<1, we get
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“(a ™ +Ib ™) <2" (a [ +Ib ™)

o) =z( >a I, ]

=ir'°( 2 3, |—} >rto(%).

n=0 k=2"

(ii) For r>1, we get

G(X):i[ zzlqk | X, ] =

k=2"

oS

n=0 k=2"
HOO 2n+11 y X
Z qu|— <r“o|l—|.
n=0 k=2" r

(iii) It is clear that (iii) is satisfied by the convexity
of c.

Lemma (3):_For any X € Ces[(a,),(p,),(q,)], the
following assertions are satisfied:

(i) If]| x||<1, theno(X) <|| x|,

(i) if|| X ||> 1, theno(X) =|| X ||,

(iii) || X ||=1 ifand only if &(X) =1,

(v)if 0<r <1 and| x|>r,theno(X)>r"
() if r>1 and || x||<r,then o(x) <r"

Proof : It can be proved with standard techniques in a
similar way as in [5,13].

Lemma(4):Let (x,) be a
inCes[(a,), (p,). (a,)].

(i) if Lim|| x, |=1, then Limo(X,) =1,

sequence

(i) if Limo(x,)=0,then Lim| X, ||=0
n—oo nN—oo
Proof:(i) Suppose that Lim|| X, [[=1.Then for any
n—oo
£ €(0,1) there exists n, such that

-4 x, |<l+ev n=n
1-&)" <o(x)<@+¢)"

o- By lemma (3),

implies that
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Limo(x,) =1.

n—o0
(ii) IFLim || x,, ||[= O, then there is an & € (0,1) and a
n—oo

subsequence (X, ) such that || X, [[> g™ v ke

This implies that Limo (X, ) # Oand
n—o0
Hence Limo(x,) #0.
n—o0

Lemma(5):Let X, X, € Ces|(a,),(p, )(a,)].
Vn eN

X, (1) > X(i) as n—>o0 V i €N, then X, > X
asnN — oo,

If o(x,) > o(X) a n—>o and

Proof:
2r+1 1
Since, o(X) = Z(a qu|x(k) N <o, then
r=0 k=2"
for &>0, there exists I, €N such tha
Z 2%1
(a Do IxK) )" <=7, @
r=ry+1 k=2" 3(2M+l)
Since

o 2r+l A 2r+1_1

Z 0% (DT = a()-) (8, Y, [x(K))”

r=0 k=2" r=0 k=2"
as N —oo and X, (K) > x(k) as n—> oo,

v K €N, there exists I, € N such that v r > I

© 2r+1_1 0 2r+1 1

Z(ar qu |Xn(k) )P - Z qu |X

r=rp+l  k=2" r=ry+l k=2" ( )
@)
Since X, (k) >x(k) a n-—>oothen for

every N > n, we get | X, (K) —x(k) |< &
for some ny. As a result we get

2r+1 1

Z(a DG 1%, (k) = x(k) )™ <—

r=0 k=2"
vn>n,. ©)

From (1), (2) and (3) it follows that forn=n,, we
have
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3 1%, () — x(K) |J

k=2"

o(x, —X) :i(

rO 2r+1_1 o 2r+l 1

2@ Y XK =xK)D* + Y (& Y D (k) -xlk

r=0 k=2" r=r+l k=2"

2r+1 1 Pr

P o 2y
AL j ; z[arzqux(knj
k=2" r=ry+l k=2"

2 P c
( qulX(k)lj +m

k=2"

<§+2M i[

r=ry+l

<= +2M 22

r=rp+1
g &
<—+—+—=¢

This shows that Limo(x, —X) =0 and by lemma
n—o0

4 (ii), we get Lim|| X, —x|[|=0
n—ow

Main results

Theorem (1): Ces[(a,),(p,),(q,)] is a Banach
space with respect to the Luxemburg norm defined

by||X||—|nf{p>O o{ J<1}
P

LetX, = (X,(k))ry,n=012,... be a
Ces[(a,), (P,), (d,)]

according to the Luxemburg norm. Thus V & € (0,1)

Proof:
Cauchy sequence in

3 n, such that || X, — X, <" v mn>n,. By

Lemma 3(i) we obtain

o(x, —x )< X, —x [l<e" vmn>n,.
(4)
@ 2™ i
That iSZ(ar qu | X, (k) —x., (k) |] <"
r=0 k=2"
vm,n=n,. Forany k we get
| X, (K)—x,(K)|<xevmn>n,, and the

sequence (X, (K))is a Cauchy sequence of real
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numbers. then  from

Letx(k) = Limx, (k) ,

inequality (4), we can write

Z( qulx(k) X(k)IJ <&,

r=0 k=2"

8

vn>n,.That is, o(X,—X)<&g" =X —>X as
n— oo,

By the following calculations,

i[?mX]=j[§mX Gl Yo

=0\ k=2 r=0 k=2" k=2"

T}iﬁﬁmx

N —
o

o

k=2" r=0 k=2"

[ZO[ 2iqklx

we see that the sequence X, converges to

x = (x(k)) € Ces[(a,),(p,).(qy,)]. This

completes the proof.

Theorem(2):The space Ces|(a,),(p, ).(a,)] has
the property Kadec-Klee (H-property).

Proof.  Let  xeS(Ces[(a,).(p,)(a,)]
and x € B(Ces[(a,),(p, ),(q, )] ¥neN such that
| X |1 and x —Y—>X asn—>oo. From
Lemma 3(iii), and Lemma 4(i) we get o(X) =1 and
that o(X,) = o(X) asn — oo. Since

th

XnL)X and the I -coordinate mapping I, :

Ces[(a,),(p,)(a,)] >R defined by IT,(x)= X,
is a continuous linear functional, it follows that
X, (i) > X(i) as n—oo for all i €N. Thus we

obtain by Lemma 5 that X, — Xas N —> 0.

Theorem (3) The space Ces|(a,),(p, ),(a, )] is not
rotund, and so is not LUR.

Proof: It is sufficient to give a counter example.
Choosing

( 1 0 1
2,0,%2" "a,q,%2"

X =
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1 1
a0, %2’ 8,0, Y2
X,y € S(Ces(@,),(p, ) (a,)]), and their

midpoint (x+y)/2 € S(CeS [(an), ( P, ), (qn )]) . This
shows that (x+y)/2 while belonging to

S(Ces[(a,),(p,)(a,)]). is not an extreme point
for B(Ces[(a,).(p, ).(a,)])-

Corollary

y =( ,0,0,0,.....) , we see that

(1) Ces(p) is not rotund, see [5].

@) Ces|(p, )(a, )] is not rotund, see [13].
Finally, we get the following:

Theorem (4): The space Ces[(a,),(p,).(q,)] is a

complete linear metric space with respect to the
paranorm defined by

g(x)[Z[ thk|xk|J ]

n=0 k=2"

Proof: The proof of linearity of

Ces[(a,),(p, ).(q,)] with respect to the coordinate

wise addition and multiplication follows from the
following inequalities which are satisfied for all

X,y  Ces[(a,),(p,).(a,)]

o 24 P ﬁ M : of 2ta )P %
{z[an zquk+yk] ] {z[ zquk] } {z[an zqkyk] }
=0\ k=" =0\ k=2 =0\ k="

G), and |a|"<max{l|a|'} for any
a eR.

We now verify that g(x) is a paranorm over the

space Ces|(a, ), (p, ), (a, )]. In fact,
() 9(0)=0
(i) g(-X) = 9(x). ¥x «Ces|(a,). (p,).(a, )]

(i) g(x+y)<g(x)+g(y).
VX, Yy € Ces[(an),(pn ), (qn )] follows from the
inequality (5).

(obvious)
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(iv) Let (X,,) be any sequence in

Ces[(a,), (P, ).(q,)]such
that g(X,, — X) ——>0; let (,,) be any

sequence in R such that| &, —a | ——=—0, since
X, =X+ (X, —X) then we get

9(X,) < g(x) +9(x, —X). Hence {g(x,)}is

bounded and we have

g((Zme - (ZX) = i[an Z_qk |0!me (k) - ax(k)|j

n=0 k=2"

|
=|

n=0 k=2"

= i(an qu\(am —a)(, (K)) +a(x, (k)—X(k))] :

this tends to zero as M — o0.

The completeness of the space

Ces [(a“), (pn ), (qn )] is a routine verification by
using standard techniques as theorem (1).
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