
Journal of American Science                                                                                                                 2010;6(10) 

 

Application Of Navier‐Stokes Equations Via A Model For 

Water Flow In Green Plant 
 

1
Lawal O.W,  Adeosun T.A,  Olayiwola M.A, and  Falade A.O 

2 3 4

4,3,2,1
Department of Mathematics 

1
Tai Solarin University of Education, Ijagun, Nigeria. 

4,2
Yaba College of Technology, Yaba, Lagos, 

3
Osun State University, Oshogbo, Nigeria. 

adebaba2001@yahoo.com 

 

 Abstract:  A dynamic mechanistic mathematical model of water flow through the xylem of growing plant is 
developed. We describe current theories about the physiology of xylem that necessitated the development of internal 
processes to supply all part of the plant with water. The model via Navier-Stokes equations is known to be a good 
tool for interpreting the phenomena of water transport in vascular tissues from roots hairs to the leaves. We derive 
the Hagen-Poiseuille formula for circular cross sectional xylem and determine the amount of flow in an annular 
cross sectional xylem. Some results of the model show that the increase in boundary of the annular cross sectional 
xylem compared with the circular-sectional xylem makes the coefficient in the velocity equation different. Hence a 
normalized annular xylem is presented where outer radius of xylem is fixed and the inner radius varied.  [Journal of 
American Science 2010;6(10):795-798]. (ISSN: 1545-1003). 
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1. Introduction 

A Navier-Stokes equations (Lapidus and 
Pinder, 1999) is a model example of Newton`s law of 
motion. It is a good tool for interpreting some 
interesting phenomena appearing in engineering 
flows. Nevertheless, the coverage is limited to 
physiology of xylem (Thornley, 1979), since non-
linear partial differential equations are difficult to 
solve analytically with few exceptions. However, due 
to the widespread use of computers, obtaining any 
numerical solutions is feasible. The simplest one will 
be finite element method which includes several 
versions. Another reason for limiting the coverage lies 
in difficulty in finding easy and interesting examples 
beyond Hagen-Poiseuille’s law (HP) for quasi-static 
pressure gradient. 

Let us compare the xylem system of plants 
with the more familiar human vascular system. In 
contrast to the human circulatory system, the xylem 
system of plants is responsible for the transport of 
water from the roots throughout the plant. Water 
transport in vascular tissue where xylem carries water 
and mineral ions from roots hairs to the leaves (Kosh, 
Stephen and Gregory, 2004). Unlike the blood vessels 
of human physiology, the conduits of plants are 
formed of individual plant cells placed adjacent to one 
another. During cell differentiation the common walls 
of two adjacent cells develop holes, which permit 

fluid to pass between them. It has been proven that 
water moves across each cell by osmosis (Landsberg 
ans Fowkes, 1979), ( Fred, 1981) provided the 
mechanism that forces water up the plant in various 
ways – when xylem is dead at its mature stage then 
water travels up the plant, not due to any pumping 
mechanism by live cell. Pericycle provides the force 
for lifting the water up the xylem is a process called 
transpiration stream and this moves against the force 
of gravity because of root pressure and capillary 
action.  

(Upadhyaya, 2004, 2002 and 1998) claimed 
that roots are not needed; the solution was drawn up 
the trunk, killing nearby tissues as it went. Leaves are 
needed for upward movement of water. Hence this 
transport is not powered by energy spent by the 
tracheary element contained in the xylem while the 
phloem contains sieve element that remain 
metabolically active, (Northington and Goodin, 1984).       

Blood vessels are often modeled as elastic 
tubes since their deformation may be significant due 
to the pulsatile nature of the flow. In plants, however, 
the flow is quasi-steady and the vascular cells have 
stiff cell walls, making a rigid-tube model appropriate. 
Reynolds numbers for flow in the human aorta and in 
the xylem of a plant are respectively about 2000 and 
0.02. This means that there exists slow viscous flow. 
Kenyon, (1960,), Slatyer, (2000)   whereby the inertia 
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terms are neglected in the Navier-Stokes equations. In 
this paper, the Hagen – Poiseuille formula for circular 
cross sectional xylem using the Navier-Stokes and 

continuity equation was derived with the 
determination of amount of flow in an annular cross 
sectional xylem. 

 
 
Model Formulation For Water Flow In Xylem 

For viscous incompressible fluid, a combination of the Navier-Stokes equation and the Continuity equation 
are given as 
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For incompressible fluids, the last term of equation (1) reduces to 
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The derivation of a formula for the flow of water in the xylem of a plant, requires that we write out the Navier-
Stokes equation and the continuity equation in cylindrical coordinators. This shows that the pressure difference 
changes only in the z - direction while the velocity in the z - direction remains constant. Therefore reduce the 

Navier-Stokes equation to a simplified equation in cylindrical coordinates ( zr ,, ) are given as: 
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where  respectively are the pressure and velocity and vandp   is the mass density and   the coefficient of 

viscosity with the  assumption that there is no rotational velocity, hence we have 

    (6) 0,0  rvv
and that the flow is steady state, and  even flow 
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 Apply Equ (7) to Equ (3) and (4) gives 
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Then Equ (5) becomes 
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Equation (2) in cylindrical coordinates gives 
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Applying (6) to Equ (10) gives 
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we assume that the velocity is the z - direction with respect to   is constant. 
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Equation (11) then becomes  
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On integration, the result appears to be 
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The constant  must be equal to zero since the velocity must remain finite at the centre of the xylem. The constant 

is determined from the requirement that 

a
b 0v  for RwhereRr ,  is the radius of the xylem. 
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Hence the Hagen Poiseuille formular for a circular pipe is derived. 
Now to determine the amount of flow in an annular cross sectional xylem, the computation is the same as for the 
circular cross-sectional xylem. 

Let  210 RrandRrwhenv   

Where  are inner radius and outer radius respectively. 21 RandR
Equation (15) can be rewritten as 
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And for volume rates of flow, we have 
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Equation (19) can be rewritten as 
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 where denotes the flow in the annular region of xylem. aQ

  is the flow in a cylindrical region of radius . cQandRrR 21  2R
 
Results 

We noted that equations (18 and 20) hold for laminar incompressible flow. The Reynolds number should be 
smaller than 0.02 otherwise the transition and/or turbulence will be set up. 

The flow in both circular cross sectional xylem and annular cross-sectional xylem is reduced to equation 
(20). A resulting graphical normalized annular xylem is shown in Figure 1. The result shows a normalized annular 

xylem where  is fixed and ranges from . Hence the flow rate of water in xylem is affected by 

chemical concentration and hydrostatic pressure gradient. 
2R 1R 20 Rto

 
Conclusion 

In this paper, we have introduced a simple model for flow rate on the basis of the simplified version of 
Navier Stokes equations. In the physiology of xylem in plants, it is observed that this model will contribute 
immensely towards the effective flow of water in green plants. This model will serve as a second fiddle in 
investigating other similar problems of cavitation column of water in the xylem that may interrupt its flow. One 
possible problem will be in the water flow in curved phloem of green plants. 
 
Nomeclature 
p  Pressure gradient 

  Mass density 

v  Velocity 
  Coefficient of viscosity 

Q Volume flow rate 

 rR  Radius of cross-sectional xylem 

zr ,,  Cylindrical coordinates  
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Fig 1: Normalized annular xylem 
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