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1. Introduction 
 The classical theory of optimal control was 
developed in the last years as a powerful tool to 
create optimal solutions for real processes in many 
aspects of science and technology. Complexity of 
applying analytical methods for obtaining fast and 
near optimal solutions is the reason for creating 
numerical approaches. An overview of numerical 
methods for solving optimal control problems 
described by ODE and integral equations can be 
found in (Schmidt, 2006). However these methods 
are not much developed for optimal control of 
nonlinear integral equations. Belbas (1999; 2007; 
2008) has introduced and elaborated some interesting 
iterative schemes with their convergence for optimal 
control of Volterra integral equations considering 
some conditions on the kernel of integral equation. 
Also some methods based on approximating the 
kernel of integral equation which gives rise to a 
system of ordinary differential equations for 
approximating the Volterra integral equation can be 
seen in (Lukas and Teo, 1991; Wu et al., 2007).  
 Of course it seems that the lack of general 
methods for solving Volterra integral equations makes 
serious difficulties in using of these schemes. 
        The idea of combination of some numerical 
methods for solving optimal control problems and 
Volterra integral equations may lead to present 
executable numerical approaches for obtaining near 
optimal solutions of optimal control problems 
governed by Volterra integral equations. This study 
intends to actualize this idea by combining the method 
of parameterization, (Mehne   and   Borzabadi,   2006; 
Teo et al., 1999a; 1999b) and the method of power 
series, (Maleknejad et al., 2007a; 2007b; Tahmasbi 
and Fard, 2008), which are successful methods for 
solving some classes of optimal control problems and 

Volterra integral equations, respectively, for 
providing a numerical scheme to find approximate 
optimal control of systems governed by some classes 
of nonlinear Volterra integral equations which can be 
described by the following minimization problem: 
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and it is considered as a polynomial of degree at most 
: m
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such that , are continuous 

functions. Now we consider the minimizing of on 

with as unknowns. This is obviously an 

optimization problem in n dimensional space: 
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 Suppose  be the solution of 

minimizing on then 

polynomial form of and 

considering the special form of integral equation 
kernel allow us applying a method based on power 
series for extracting polynomial solution of (4), 
(Tahmasbi and Fard, 2008), where applying this 
method give rise to obtain a sequence of state 
functions as Taylor series, see Theorem 1 

in (Tahmasbi and Fard, 2008) and finally to achieve a 
minimizing sequence . 
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a contradiction concludes with 
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3. Numerical results
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and 0.0107=2,1 . In Table 1 the successive applying 

of Algorithm 1 for some values of m and n is shown. 
the state andAlso  control functions that are obtained 

in process of using Algorithm 1 for problem (10-11) 
are shown in Fig. 1. 
 
Table 1: The results of applying proposed algorithm in Example 1 

 n m  nm,  

1 1 0.0444 
1 2 0.010  7
1 3                          1.5226×104 

52 2                          7.8920×10  
2 3                          2.5166×105 
2 4                          1.0922×107 
 

 
(a) 

 

 
(b) 

Fig. 1: The state and control functions in example 1 
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Example 2: In this example the optimal control 
problem of minimizing  
 

          (12) 

governed by the nonlinear Volterra integral equation: 
 

                         (13)  
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Algo
problem,  as previous example, is shown in Table 2
Also the state and control functions obtained durin 
the application of Algorithm 1 on problem (12-13) 
are shown in Fig. 2. 
 
T xample 2 

n  m   nm,  

1 2                                  3.5575×1011 
3                                  1.4975×101 

2 

12 
3                 14                 3.0905×10  

 

 
(a) 

 

 
(b) 

Fig. 2: The state and control functions in example 2 
 

Example 3: It seems to obtain suitable approximate 
solution for problems that have the exact solution as 
exponential function is difficult. In this example we 
consider the optimal control problem of minimizing 
nonlinear functional:  
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on the Volterra integral equation: 
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 Fig. 3, one can see the state 
and control functions that are obtain

rocess of applying Algorithm 1 on pro

lgorithm in example 3 

 The exact optimal control and state functions are 
tetu =)(* and tetx =)(* respectively and optimal 

criteria is 0=))(),((= *** tutxJJ . Table 3 shows 

interesting results by applying proposed approach on 
e problem (14-15). Inth

ed during the 
blem (14-15). p

 
Table 3: The results of applying proposed a

n  m  nm,  

1 
1 

1                         2.1070×104 
2                         2.3385×107 

1 3                         1.9795×108 
2 2                       4383×10  1.  

2 3                        4.2201×1010 
 
 

 
(a) 
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(b) 
rol fF

 
ig. 3: The state and cont unctions in example 3 

4. Conclusion 
 In this study, we have proposed a numerical 
scheme for finding approximate solution of optima
control problems governed by a class of nonlinea
Volterra integral equations. Our limitation in the 
application of this method depends on the type of 
integral equations that we face because of the power
series method only for solving certain categories o
integral equations may be applied. Although the 
presented numerical examples show the efficiency of 
the method for solving a wide range of problems. 
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