
Journal of American Science 2010; 6(12)

http://www.americanscience.org editor@americanscience.org

164

A Framework for Testing Software Product

Amjad Farooq
1
, M. Junaid Arshad

1
 and Muhammad Abuzar Fahiem

2

1, 2

Computer Science and Engineering Department, UET, Lahore
2
Department of Computer Science, Lahore College for Women University, Lahore, Pakistan

amjadfarooq@uet.edu.pk

Abstract: There is a growing need of frameworks for automatic testing of software product because manual testing

of huge software product is very time-consuming and costly. Furthermore, the manually testing of complex software

becomes more difficult and a challenging activity. However this can be easily achieved through automatic testing

strategies. In this paper we propose a framework for testing software automatically. Now errors and bug finding

become simpler and easier. It takes less time to test the whole application rather than testing application modules

separately. The proposed framework provides programmatic access to most user interface elements. The main

propose of our framework is to make testing phase easier and cost efficient. We validate our framework through a

case study. By analyzing the results of testing the correctness and completeness of framework is proved. [Journal of

American Science. 2010;6(12):164-173]. (ISSN: 1545-1003).

Keywords: Software testing; test automation; test framework

1. Introduction

The manually testing of complex software is

a very difficult and a challenging activity. However

this can be easily achieved through automatic testing

strategies (Yingxiang, 2008). Nowadays, the user

interface (UI) testing automation has become an

integral part of software development in all big

corporations (Jovic and Hauswirth, 2010). UI

Automation means testing any User Interface

application in an automated fashion. This method of

testing is far more effective than just doing manual

testing as it is best to catch the last minute bugs and

basically improves overall product quality (Mathew

and Spraetz, 2009). The automation runs faster and

the benefit is that it doesn’t require human input like

manual testing. By this large application testing

become simpler, easier and less time consuming [9].

As for the evolution of the testing field, there have

been some innovations over the years. What’s

striking about the innovations, however, is how few

people know about them, and even fewer people are

using them. In terms of evolution, here in Pakistan,

we’re in the Dark Ages of testing. Many test teams

work in isolation, knowing little of the existing

literature on the subject, and providing little input to

improve UI testing. Due to the importance of testing,

most probably in few years it will evolve into a

proper engineering discipline.

The rest of paper is structured as follows:

The background and the related work are given in

Section 2. The functionalities, and design description

of proposed framework is given in Section 3

whereas; the different test scenarios used to validate

the proposed framework are also listed in the same

Section. Finally, the paper ends with conclusion in

Section 4.

2. Background and Related Work

There is a growing need of frameworks for

automatic testing of software (Riungu et al,2010;

Berner et al, 200). Both, the functional and non-

functional requirements of the software need to be

tested but their manual testing consumes a lot of time

and budget resources (Jovic and Hauswirth, 2010;

Sarkar et al., 2009; Mesbah and van Deursen, 2009).

Furthermore, it rises multiple times for a complex

software testing. Furthermore, to measure the quality

of software the execution-based testing has its own

importance (Viswanathan and Peters, 2010). In

(Wang and Damata, 2009), GUI testing toolset is

described. This toolset supplements the basic testing

tasks required in the common GUI testing process. It

generates test cases and has a reporting mechanism.

Although it is a good toolset but the target software is

not a web-based. The Force.com (Mathew and

Spraetz, 2009) framework includes some testing

utilities to create test cases and those test cases are

applied for the automation of individual modules of

software. AUTOWEB (Chai et al., 2009) is an

interesting tool, it test the online- assignments

submitted by students. It generates demo of failed test

cases automatically. It aims to provide help to

students in order to solve their assignments.

mailto:amjadfarooq@uet.edu.pk

Journal of American Science 2010; 6(12)

http://www.americanscience.org editor@americanscience.org

165

3. Proposed Work

The basic architecture of our framework is

given in Figure 1. There is a UI Automation Tester

class which contains all the test cases. User firstly has

to start the target UI application. The user task then is

to select the test case to which he/she wants to run.

Figure 1: System Architecture of our Proposed

Framework

Internet connection should be established to

test RSS Feed Reader. RSS Feed Reader needs

internet to read latest feed which are continuously

upgraded on the sites, regarding the URL specified.

The layered architecture of our framework is as given

below:

Test Cases

Operational Logics

UI Wrappers – Physical Layer

Figure 2: Layered Architecture of our Proposed

Framework

Test cases layer contain the test cases for the

application organized by the area names and test

names. Each test case represents a user scenario.

Some scenarios are higher in priority than others. A

test case is collection of a bunch of logical calls that

live in logical layer. The test cases use / consume the

logical layer in it or interacts with the Logical Layer.

Some examples of test case: Reading an RSS Feed

and making sure that correct feed is displayed; create

a new word document and making sure that a plain

document is created without errors.

Logical layer is collection of methods that

represents user actions. These are logical methods

that do actions needed to complete a test case. For

example in order to complete the above mentioned

test cases logical methods will be needed to make

sure that application is in running state; to read RSS

Feed that takes in a custom RSS Feed location. A

method in logical layer is merely a collection of calls

to physical layer that does physical action e.g. to

create a document the physical action that test code

will do by clicking the File Menu and then New

Document Menu.

Physical layer is also called direct UI

Wrappers. Physical layer consists of the wrappers

over all the UI Controls that we have in the

application. It gives us an interface that we can use to

call actions on the UI Controls in the application e.g.

Click Read Feed Button, set value in a Location Text

box. The mechanism is limited to Testing UI.

Applications only developed in C# or VB.Net. The

software is application specific; test cases are specific

to the application that you want to test. The overall

workings of proposed framework have shown in

Figure 2 and 3.

For sake of simplicity, the following we have

considered the following assumptions and

constraints.

 Software is developed for testing a UI

application which is RSS feed reader.

 Test cases are specific to the application.

 Test cases are not generic or couldn’t run on

other UI applications for testing.

 We have developed our software in C# and

it is capable of testing UI application.

 We have not purchased any type of software

and hardware equipment for our project.

 The class diagram of proposed framework is

given in Figure 4. We have TestExecution Client App

that runs our tests; you can pick a test and run it that

class is represented by ExecuteScriptClient. it

contains the UI for our execution engine and methods

like start app, execute script etc. When a test is

selected and executes script is called then we move to

Script class or TestCases class. Script class has all

our test cases. Script class interacts with Logical

Class and Logical Class contains RSS

ReaderFunction. RssReaderFuction Class is the one

that contains our logical actions. Rss Reader has an

association relationship with physicalObjects

class.Physical Objects contains wrappers for all the

UI controls. Then Physical Objects calls into

ScriptFunctons class that has all the methods that

help us do actions on these UI controls e.g. click, set

text Toggle, Set Value etc.

A selective list of graphical user interfaces

used for different requirements are given in the

Figures 5-9 followed by their respective input,

processing and output. We have used different test

scenarios to check the correctness of proposed

framework. Some of the scenarios are listed in the

Tables 1-8 respectively.

Journal of American Science 2010; 6(12)

http://www.americanscience.org editor@americanscience.org

166

Figure 2: System sequence diagram of proposed framework

Figure 5:Graphical User Interface for adding a Favourite

Input Automatically click on Favorites List.

 Click on Favorites List.

 Write URL in name text box.

 Specify folder name in folder text box or select already created folder from

drop down list.

 Click on Add button.

 To cancel this window click on cancel button.

Output URL added to the favorites list in the specified folder.

Processing Create folder if specified. Add URL to the favorites list. And close the window.

Journal of American Science 2010; 6(12)

http://www.americanscience.org editor@americanscience.org

167

Figure 3: Operations of proposed framework

Figure 4: Class Diagram of proposed framework

Journal of American Science 2010; 6(12)

http://www.americanscience.org editor@americanscience.org

168

Figure 6:Graphical User Interface for Favourite list

Journal of American Science 2010; 6(12)

http://www.americanscience.org editor@americanscience.org

169

Input Automatically click on Favorites List from menu bar and

then go to the Documentary folder from the list.

Output Display selected URL in the text box.

Processing Select the URL from the Documentation list.

Figure 7:Graphical User Interface for searching

Input Automatically click on the search from menu list.

 Input what you want to search.

 Click on Search button.

Output Show search results.

Processing Read input from search word text box and display find the

results.

Figure 8:Graphical User Interface for starting the target application

Journal of American Science 2010; 6(12)

http://www.americanscience.org editor@americanscience.org

170

Input Click on Start Target button.

Output Display RSS Feed Reader window.

Processing Open the target application.

Figure 9:Graphical User Interface for executing script

Input Select any test case which u wants to run and click on Execute script button.

Output Display test results on the Data Grid Box.

Processing Run selected test case to test the target application.

Table 1: Start Test Application

UC-01: Start Test Application

Actors: User

Feature: Start application

Use Case Id: UC-01

Pre Condition: Application should be debugged for starting the application.

Scenarios

Step # Action Software Reaction

1. Start target application. Software will open target application.

2. Select test cases from drop down menu. Run the selected test case and display results in grid box.

Alternative Scenarios:

Target application should be started before selecting test cases.

Table 2: Start Target Application

UC-02: Start Target Application

Actors: User

Feature: User will start the target application.

Use Case Id: UC-02

Pre Condition: User should be click on the start target application button.

Scenarios

Step # Action Software Reaction

1. User presses the start target application button. Software will open the RSS Feed Reader application.

Execute Script Client Window will displays a message

in grid box “Target started; execute script”.

Alternative Scenarios:

User should have to click the start target application button in each and every condition.

Journal of American Science 2010; 6(12)

http://www.americanscience.org editor@americanscience.org

171

Table 3: Select Test Case

UC-03: Select Test Case

Actors: User

Feature: User will select test cases from the drop down menu.

Use Case Id: UC-03

Pre Condition: User should select the test case in order to test the application.

Scenarios

Step # Action Software Reaction

1. User selects the desired test case from the drop down list. Available test cases are:

 Read Current Feed

 Read specific RSS Feed

 Add RSS Feed

Alternative Scenarios:

User may directly close the application without running test cases.

Table 4: Read Current Feed

UC-04: Read Current Feed

Actors: User, Execute Script Client

Feature: User will select the “Read Current Feed” test cases from the drop down menu.

Use Case Id: UC-04

Pre Condition: User should press the Execute Script button in order to run the test case.

Scenarios

Step # Action Software Reaction

1. User will press the Execute script button

to run the test case.

Software will automatically test the application and

performs the following functionalities.

 Test URL Box

 Click on Read Feed Button

 Display Feed on Grid

Alternative Scenarios:

User may select any other test case rather than selecting this test case.

Table 5: Read Specific RSS Feed

UC-05: Read Specific RSS Feed

Actors: User, Execute Script Client

Feature: User will select the “Read Specific RSS Feed” test cases from the drop down menu.

Use Case Id: UC-05

Pre Condition: User should press the Execute Script button in order to run the test case.

Scenarios

Step # Action Software Reaction

1. User will press the Execute script button

to run the test case.

Software will automatically test the application and

performs the following functionalities.

 Change URL

Alternative Scenarios:

User may select any other test case rather than selecting this test case.

Table 6: Add RSS Feed

UC-06: Add RSS Feed

Actors: User, Execute Script Client

Feature: User will select the “Add RSS Feed” test cases from the drop down menu.

Use Case Id: UC-06

Pre Condition: User should press the Execute Script button in order to run the test case.

Scenarios

Step # Action Software Reaction

Journal of American Science 2010; 6(12)

http://www.americanscience.org editor@americanscience.org

172

1. User will press the Execute script

button to run the test case.

Software will automatically test the application and performs the

following functionalities.

 Open Favorites Automatically

 Click on Add Button

 Add URL to Favorites

Alternative Scenarios:

User may select any other test case rather than selecting this test case.

Table 7: Execute Client Script

Test Case ID: T-01 Engineer: Faiza Aziz,Iram Waheed ,Farah Amjad

Application Name: Testing via UI Automation Use Case Id: UC-Start Test Applcation-01

Purpose: To start the application.

Scenario: To test target application.

Environment: Visual Studio .NET 2008, IE 8.0

Pre-Request: User should debug the program in order to test the application.

Strategy:
1. User will run the Program.

2. Execute Client Script window will open.

3. Press starts target application.

4. Select required test case from drop down list.

5. Click on execute script button.

Expected Results:

1. Execute Client Script window will open.

2. RSS Feed Reader window will open.

3. Automated testing regarding the specific test case will start.

Observations: The testing will start properly and less time is consumed on testing. All results will be displayed in

the Data Grid Box.

Results: No error found. Client Script Window opened properly. All Test cases execute properly and will check all

controls of target application RSS Feed Reader. For Example, it will show errors if URL text box is empty.

Table 8: RSS Feed Reader

Test Case ID: T-02 Engineer: Faiza Aziz,Iram Waheed ,Farah Amjad

Application Name: Testing via UI Automation Use Case Id: UC-Start Target Applcation-02

Purpose: To start the target application for testing.

Scenario: To run all test cases on RSS Feed Reader.x

Environment: Visual Studio .NET 2008, IE 8.0

Pre-Request: User should press the Start Target Application button in order to test the application.

Strategy:
1. Select ReadCurrentFeed from drop down list and click on Execute Script button.

2. Select ReadSpecificRS Feed from drop down list and click on Execute Script button.

3. Select AddRSSFeed from drop down list and click on Execute Script button.

4. Select AddAndReadRSSFeed from drop down list and click on Execute Script button.

5. Select SearchTextlnRSSFeed from drop down list and click on Execute Script button.

6. Select ChangeApp Theme from drop down list and click on Execute Script button.

Expected Results:

1. RSS Feed Reader window will open.

2. When Read Current Feed test case selected following actions performed automatically

o Test URL Box

o Click on Read Feed Button

o Display Feed on Grid

3. When Read Specific RSSS Feed test case selected following actions performed automatically

o Change URL

 4.When Add RSS Feed test case selected following actions performed automatically

o Open Favorites Automatically

Journal of American Science 2010; 6(12)

http://www.americanscience.org editor@americanscience.org

173

o Click on Add Button

o Add URL to Favorites

Observations:

Different URL is changed to check that whether RSS Feed Reader is properly getting latest feeds from the URL.

Different URL is also added to the favorites list to check that it is properly maintaining favorites List.

Results: No error found. All Test cases execute properly and will check all controls of target application RSS Feed

Reader. For Example, it will show errors if URL text box is empty etc.

5. Conclusion and Future Work

The proposed framework is purely

independent and self contained. And there is no other

related application or any third party component

involved for the development of the framework. We

have developed the framework in C# and enabled to

test various C# UI Applications. The proposed

framework is capable of testing UI application

automatically. In our framework user have to start the

application, after the UI Automation starts user task

now is to start the target application(RSS Feed

Reader), which is the application to which user wants

to test. After the target application is selected, now

user has to select any test case which he/she wants.

After the desire test case is selected automated testing

will start by testing all controls of the application. It

will tell about all bugs/errors in the application

automatically. As manual testing was more time

consuming, so our application not only reduces time

complexity but also make it efficient and convenient

for users.

Acknowledgements

Authors are thankful to the University of

Engineering and Technology, Lahore, and HEC –

Pakistan for financial support for doing this work.

References
1. Appasami S. User Interface Accessibility and Test

Automation for Silverlight Applications. International

Journal of Computational Intelligence Research 2009,

5(2), Print ISSN: 0973-1873. Online ISSN: 0974-1259.

2. Berner S, Weber, R., and Keller, R. K. 2005.

Observations and lessons learned from automated

testing. In Proceedings of the 27th international

Conference on Software Engineering (St. Louis, MO,

USA, May 15 - 21, 2005). ICSE '05. ACM, New York,

NY, 571-579. DOI=

http://doi.acm.org/10.1145/1062455.1062556

3. Chai T, Wang Z and Wang J. Automated Universal

Testing and tutoring system for WEB application.

Computer Science and Information Technology,

International Conference on, pp. 188-192, 2009 2nd

IEEE International Conference on Computer Science

and Information Technology, 2009.

4. Jovic M and Hauswirth M. Performance Testing of

GUI Applications. icstw, pp.247-251, 2010, Third

International Conference on Software Testing,

Verification, and Validation Workshops.

5. Mathew, R. and Spraetz, R. 2009. Test Automation on

a SaaS Platform. In Proceedings of the 2009

international Conference on Software Testing

Verification and Validation (April 01 - 04, 2009).

ICST. IEEE Computer Society, Washington, DC, 317-

325. DOI= http://dx.doi.org/10.1109/ICST.2009.46

6. Mesbah A and van Deursen, A. 2009. Invariant-based

automatic testing of AJAX user interfaces. In

Proceedings of the 31st international Conference on

Software Engineering (May 16 - 24, 2009).

International Conference on Software Engineering.

IEEE Computer Society, Washington, DC, 210-220.

DOI= http://dx.doi.org/10.1109/ICSE.2009.5070522

7. Riungu L, Taipale O, and Smolander K. Software

Testing as an Online Service: Observations from

Practice. icstw, pp.418-423, 2010 Third International

Conference on Software Testing, Verification, and

Validation Workshops, 2010.

8. Sarkar C, Soderston C, Klementiev D, and Bell E.

Remote Automated User Testing: First Steps toward a

General-Purpose Tool. A chapter in book: Software

Engineering Research, Management and Applications

2010.

9. Viswanathan S, and Peters J. C. Automating UI

guidelines verification by leveraging pattern based UI

and model based development. In Proceedings of the

28th of the international Conference Extended

Abstracts on Human Factors in Computing Systems

(Atlanta, Georgia, USA, April 10 - 15, 2010). CHI EA

'10. ACM, New York, NY, 4733-4742. DOI=

http://doi.acm.org/10.1145/1753846.1754222.

10. Wang M and Damata, L. 2009. TAO Project: An

Intuitive Application UI Test Toolset. In Proceedings

of the 2009 Sixth international Conference on

information Technology: New Generations (April 27 -

29, 2009). ITNG. IEEE Computer Society,

Washington, DC, 796-800. DOI=

http://dx.doi.org/10.1109/ITNG.2009.86

11. Yingxiang Z. Ingrid - An automated testing system for

telephony software - A case study. UVic Subject

Index::Sciences and Engineering::Applied

Sciences::Computer science, 2008.

7/1/2010

http://doi.acm.org/10.1145/1062455.1062556
http://dx.doi.org/10.1109/ICST.2009.46
http://dx.doi.org/10.1109/ICSE.2009.5070522
http://doi.acm.org/10.1145/1753846.1754222
http://dx.doi.org/10.1109/ITNG.2009.86

