
Journal of American Science 2010;6(12)

http://www.americanscience.org editor@americanscience.org 284

A Systematic Approach for Mobile Agent Design Based on UML
(Class and Sequence Diagrams)

M. S. Al_Kholy, A. R. Khalifa and M. G. Alsaied

Systems and Computer Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt

Abstract: Agent researchers are still trying to determine useful ways to represent agents and agent-based systems.
So, this paper presents a proposal for a Systematic Approach for Agent Design by using a Unified Modelling
Language (UML) diagram. Here we illustrate notions for the behavior of an agent using and extending UML class
diagrams. Focus on representing the agent migration from take requests and between other hosts. In this case study,
we explain one variant of notation that is the most suitable for given scenario, show that it is easier to design agent
applications based on agent UML, by developing software for our case study generated by UML software package.
[Journal of American Science. 2010;6(12):284-290]. (ISSN: 1545-1003).

Keywords: Mobile Agent Design, Class Diagram ,Sequence Diagram, UML, A Systematic Approach

1. Introduction:

Since a long time people have been using
each other's and sometimes animals as their agents.
Developments in information processing technology,
computers and their networks, have made it possible
to build and use artificial agents. These agents are the
advanced tools that people can use to achieve
different goals and to solve various problems. The
main difference between ordinary tools and agents is
that agents can function independently from those
who delegated agency to the agents. Now, the most
popular approach in artificial intelligence is based on
agents. Intelligent agents form a basis for many kinds
of advanced software systems that incorporate
varying methodologies, diverse sources of domain
knowledge, and a variety of data types. The
intelligent agent approach has been applied
extensively in business applications, and more
recently in medical decision support systems [1, 2] as
well as ecology [3]. In the general paradigm, the
human decision maker is considered to be an agent
and is incorporated into the decision process. The
overall decision is facilitated by a task manager who
assigns subtasks to the appropriate agent and
combines conclusions reached by agents to form the
final decision. This paper is structured as follows.
Section 1 is this introduction. Section 2 gives the
concept of agent (definitions). Section 3 represents
related work that includes Historical overview and
answer the question (why UML?). Section 4 shows
the different UML diagrams and their applications for
agent-based systems, basically concerning with class
diagrams. Section 5 provides a case study with a
searcher scenario. Section 6 represents a Class

Diagram for the Case Study. Section 7 concludes the
paper.

2. The Concept of an Agent

There are several definitions of intelligent and
software agents. Some of the major definitions and
descriptions of agents are given as follows:
• Agents are semi-autonomous computer programs

that intelligently assist the user with computer
applications. This is achieved by employing
artificial intelligence techniques to assist users
with daily computer tasks, Such as reading
electronic mail, maintaining a calendar, and
filing information. Thus Agents can learn
through example-based reasoning and can
improve their performance over time.

• Agents are computational systems that inhabit
some complex, dynamic environment, and sense,
and thus act autonomously to realize a set of
goals or tasks.Agents are software robots that
think and act on behalf of a user to carry out
tasks. An agent helps meet the growing need for
more functional, flexible, personal computing
and telecommunications systems. The usage of
intelligent agents includes self-contained tasks,
operating semi-autonomously, and
communication between user and systems
resources.

• Agents are software programs that implement
user delegation. Agents manage complexity,
support user mobility, and lower the entry level
for new users. Agents are a design model similar
to client-server computing, rather than being
strictly a technology, program, or product [4].

Journal of American Science 2010;6(12)

http://www.americanscience.org editor@americanscience.org 285

• An agent is anything that can be viewed as
perceiving its environment through sensors and
acting upon that environment through effectors,
(Russel and Norvig, [5]).

• Intelligent agents continuously perform three
functions: perception of dynamic conditions in
the environment; action to affect conditions in
the environment; and reasoning to interpret
perceptions, solve problems, draw inferences,
and determine actions, (Hayes-Roth, [6]).

• Intelligent agents are software entities that carry
out some set of operations on behalf of a user or
another program, with some degree of
independence or autonomy, and in so doing,
employ some knowledge or representation of the
user's goals or desires [7].

• People, animals, and robots are examples of
physical agents. Software agents and Ego in the
sense of psychoanalysis are examples of mental
agents. The head of a Turing machine (cf., for
example, Burgin, [2]) is an example of a
structural agent.

3. Related Work
3-1 Historical overview

A considerable number of agent-oriented
methodologies and tools are available today, and the
agent community is facing the problem of identifying
a common vocabulary to support them (for details see
the work in [9], on which this section is based). There
is a considerable interest in the agent R&D
community in methods and tools for analyzing and
designing complex agent-based software systems,
including various approaches to formal specification
(see [10] for a survey). Since 1996, agent-based
software engineering has been in the focus of the
ATAL Workshop series; it also was the main topic of
the 1999 MAAMAW Workshop [11]. Various
researchers have developed methodologies for agent
design, touching on representational mechanisms,
like the GAIA methodology [12] or the extensive
program underway at the Free University of
Amsterdam on compositional methodologies for
requirements [13], design [14], and verification [15].
In [16,17], Kinny et al. propose a modelling
technique for BDI agents. The close affinity between
design mechanisms employed for agent-based system
and those used for object-oriented systems is shared
by a number of authors, for example, [18]. In
particular, since 2000, the Agent-Oriented Software
Engineering Workshop (AOSE) has become the
major forum for research carried out on these topics,
including new methodologies such as Tropos [19],
Prometheus [20], and MESSAGE [21]. Currently,
most industrial methodologies are based on the

Object Management Group’s (OMG) Unified
Modelling Language (UML) accompanied by process
frameworks such as the Rational Unified Process
(RUP), see [22] for details. The Model-Driven
Architecture (MDA [23]) from the OMG allows a
cascade if code generations from high-level models
(platform independent model) via platform dependent
models to directly executable code. Another approach
for agile software engineering that has been receiving
active coverage is Extreme Programming [24].

The UML is a standard modelling language for
visualizing, specifying, constructing, and
documenting the elements of systems in general, and
software systems in particular [25]. UML has a well-
defined syntax and semantics. It provides a rich set of
graphical artefacts to help in the elicitation and top-
down refinement of object-oriented software systems
from requirements capture to the deployment of
software components.

In UML, systems can be modelled by considering
three aspects, the behavioural, the structural and the
architectural aspects; each aspect is concerned with
both the static and dynamic views of the system. The
static view represents a projection onto the static
structures of the complete system description.
However, the dynamic view represents a projection
onto the dynamical behaviour of the system. Finally,
views are communicated using a number of diagrams
including information emphasizing a particular aspect
of the system.

3-2 Why UML

As an OMG standard, UML 2.0 has been
considered a “final” standard, as of November 2004
[26]. In other words, many of the errors and
inconsistencies of the original submission have been
rectified. More than 3000 issues were files and
resolved by the UML 2.0 Finalization Task Force. As
such, software vendors can begin to build software
tools that support the UML 2.0 Superstructure and
Infrastructure. In addition, a firmer foundation is now
available to adequately support the extensions for
agent-based system modelling. The FIPA Modelling
Technical Committee [27] and the OMG Agent
Special Interest Group are actively working on
extending UML for agent-based system modelling.
These efforts are primarily supported by the work of
more than a dozen software tool vendors.

4. Agent modelling with (UML)

UML is adequate for modelling object-oriented
(OO) systems. But UML lacks the capability to
readily model and specify agent systems. Unlike
[Odell 2001a]’s Agent UML, we feel that every
component of the UML must be extended. UML has
a long history and is the result of a standardization

Journal of American Science 2010;6(12)

http://www.americanscience.org editor@americanscience.org 286

effort on different modelling languages (like Entity-
Relationship-Diagrams, the Booch-Notation, OMT,
OOSE), namely Unified Modelling Language. The
most popular versions of UML are UML 1.x, but now
UML 2.0 is the upcoming new specification for
development of systems. (UML) is a standard
modelling language for visualizing (using the
standardized graphic UML notations), specifying the
static structure, dynamic behaviour and model
organization as well as constructing system, by
mapping UML to programming environment,
generating some code automatically, and
documenting every phase of the lifecycle from
analysis and design through deployment and
maintenance. UML consists of a notation, describing
the syntax of the modelling language, a graphical
notation, and a meta model describing the semantics
of UML, namely the static semantics of UML, but no
operational semantics. However, UML defines no
software process, since a software process describes
the development activities, the dependencies of these
activities and how they are applied.
 <<Host 1>> <<Host 2>>

Figure1. Go action in UML

UML 2.0 supports the following diagrams: class,
object, component, deployment and composite
structure diagrams for modelling the static aspects of
the systems and use case, state machine, sequence,
activity, interaction overview, timing and
communication diagrams for modelling dynamic
aspects and packages, models and subsystems for
modelling the model management [27]. Figure 1
shows an agent moving from location “host 1” to
“host 2” and represented using “Go” activity.

Class diagram

In this section we focus on the first diagram
(Class Diagram Figure 2) defined in the
Superstructure Specification. We will use this
distinction to present the diagram type and how it can
be applied for modelling agent-based systems.

A Class Diagram describes on the one side a
data model, i.e. collection of declarative (static)
model elements, like classes and types, and on the
other side their contents and relationships. Moreover
the static structure of the system to be developed and
all relevant structure dependencies and data types can

be modelled with this class diagram [25]. They are
applied in various phases of the project, e.g. analysis
(conceptual modelling of the domain), design
(platform independent description) of the
implementation, detailed design (platform specific
description) and to bridge the gap to the behavior
diagrams. Class diagrams describe classes and
interfaces with their attributes and operations, as well
as associations between them (including aggregation
and composition), but also generalization (a specific
kind of inheritance) and dependencies among them.
New to UML 2.0 is that attributes have ordering,
graphical notations for associations are defined,
graphical interface notation are introduced using
lollipops, some unification on the notations for e.g.
visibility, names and types has been done [26,28].
Moreover attributes have no implicit composition
associations and dependencies are completely
redefined. Class diagrams are illustrated in Figure 2.
An agent model can be defined using class names,
inheritance (generalization) of classes and adding
name, type, position/role, capabilities and constrains,
either directly or via associations. A role hierarchy
can be defined using generalization. However, roles
cannot be modeled in the necessary detail with any
UML 2.0 diagram. Service models can also be done
by this diagram type, e.g. defining services with
input/output parameters and pre-/post-conditions as
classes with attributes and functions (the service
interface).

Figure2. Specifying agent behaviour using UML
class diagram

5. Case Study: Book Searcher

The case study includes three network nodes:
Home, Host 1 (British Library) and Host 2 (Congress
Library) Figure 3. On Host 1 and Host 2 resides
library agent, which is responsible for providing the
books List. The searcher agent is created on the
Home node. The input parameter is the item. The
Searcher agent migrates from home node to Host1
node and requests library1 agent to give the books
list. The library1 agent responds with the whole
books list. The searcher extracts the book and
migrates to the next node. After visiting all nodes the

<<Agent>>

Journal of American Science 2010;6(12)

http://www.americanscience.org editor@americanscience.org 287

Searcher agent migrates back to the Home node and
informs the user where it has found the specified
item.

Figure3. Book searcher scenario

The mobile agent one-to-one relationship is the
simplest; where the mobile agent (library agent) is
placed between two negotiators (user searcher agent
and the library) in this case. Similarly, one-to-many
and many-to-one relationships; where the mobile
agent (library agent) is placed between one negotiator
at one side and more than one negotiator at the other
side (a user searcher agent and more than one library)
in this case.

The user inputs his demand through the Graphical
User Interface (GUI) where it is going to be placed as
a search_query. The user searcher agent then scans
the network in order to build a list of available
libraries.

The user searcher agent then takes the
search_query and starts the journey by visiting the
first library in the list.

Before the user searcher agent can reach the
server of the library, it must pass the library’s
security check. While the user searcher agent
enquires about the book needed, a local library agent,
residing in the library server, is activated. There will
be two scenarios with respect to the library: book
found and book not found. The local library agent
returns the results to the user searcher agent if the
book is found then terminates the communication
with the user searcher agent. If the book is not found,
then the local library agent informs the user searcher
agent that the book wasn’t found and then terminates
the communication with the user searcher agent. The
user searcher agent then follows the itinerary and
moves to the next library. Finally, the user searcher
agent returns back to the user with the librarie’s list
where it found the book needed.

6. Sequence Diagram for the Case Study:

Before the user searcher agent can reach the
server of the library, it must pass the library’s
security check. While the user searcher agent

enquires about the book needed, a local library agent,
residing in the library server, is activated. There will
be two scenarios with respect to the library: book
found and book not found. The local library agent
returns the results to the user searcher agent if the
book is found then terminates the communication
with the user searcher agent. If the book is not found,
then the local library agent informs the user searcher
agent that the book wasn’t found and then terminates
the communication with the user searcher agent. The
user searcher agent then follows the itinerary and
moves to the next library. Finally, the user searcher
agent returns back to the user with the libraries list
where it found the book needed figure 4 illustrate
Sequence diagram for case study.

Figure. 4 Agent-Sequence diagrams applied to

example

7. Class Diagram for the Case Study

In this section we show how usual UML class
diagrams can be used and extended in the framework
of agent oriented programming development. We will
use the following notation to distinguish between
different kinds of agent classes and instances. The
first one denotes some agent class, the second some
agent class satisfying distinguished roles and the last
one defines some agent instance satisfying
distinguished roles. The roles can be neglected for
agent instances. According to the statement given
above what has to be specified for agent classes we
specify agents by the agent class diagram.

The usual UML notation can also be used to
define such an agent class, but for more
understandable reasons we have introduced the above

Journal of American Science 2010;6(12)

http://www.americanscience.org editor@americanscience.org 288

notation. Using stereotypes, an agent class written as
a class diagram can look as shown in Figure.2.

The Class and the Activity diagrams are generated

as the static and dynamic aspects of objects by
represented the attributes and operations of the
object. Figure 5 shows the Class diagram and
Activity diagram applied to our example. The
Activity diagram shows how to search the
information and find the best solution. In the Class
diagram, there are four classes for our problem. Each
class has attributes and operations, showing their
roles as follows:

User_Interface class:

• read_search_query: This method is for
reading the search criteria from the user
through the GUI of the searcher agent.

• display_results: This method is for
displaying the results found.

• trace: This method is for displaying any
messages.

Agent Class:

• start_agent: This method is for starting the
user searcher agent.

• stop_agent: This method is for stopping the
user searcher agent after accomplishing the
task.

• terminate: This method is for ending the
code.

Agent_Control Class:

• scan_network: This method is for scanning
the network to find the libraries servers.

• return_results: This method is for sending
the results to the user.

• stop_agent_control: This method is for
ending the Agent Control.

Library_Agent Class:

• start_agent: This method is for starting the
library agent.

• stop_agent: This method is for stopping the
library agent after accomplishing the task.

• find_item: This method is for searching the
library server’s database for the book
needed.

• return_results: This method is for sending
the results to the user searcher agent.

• terminate_communication: This method is
for ending the communication between the
library agent and the user searcher agent.

• inform_termination: This method is for
informing the user searcher agent that

communication is terminated with the
library agent.

Figure. 5 Agent-class diagrams applied to example

8. Evaluation and Conclusion

This paper presents a Systematic Approach for
Agent Design to support the modeling and the
implementation of an agent using UML profile which
defines a class diagram. From the end user's
perspective, the goal is to provide a personal travel
assistant, i.e., a software agent that uses information
about the users' schedule and provides preferences in
order to assist users in travel, including preparation as
well as on-trip support. This requires providing
ubiquitous access to assistant functions for the user,
in the office, at home, and while on trips, using PCs,
notebooks, information terminals, PDAs, and mobile
phones.

The requirements for artifacts to support the
analysis and design became clear, and the material
described in this paper has been developed
incrementally, driven by these requirements. So far,
no empirical tests have been carried out to evaluate
the benefits of the Agent UML framework. However,
from this paper, we see two advantages as a result:
First, they make it easier for users who are familiar
with object-oriented software development but new
to developing agent systems to understand what multi
agent systems are about, and to understand the
principles of looking at a system as a society of
agents rather than a distributed collection of objects.
Second, our estimate is that the time spent for design
can be reduced by a minor amount, which grows with
the number of agent-based projects. However, we
expect that as soon as components are provided to
support the implementation based on Agent UML
specifications, this will widely enhance the benefit. In
our work we use the star UML package to develop
software for our case study by generating a code from
star UML software package. This software can
generate a code by more than one languages such as
Java, C++, and others.

As for future work, we are looking forward to
implement MA-UML diagrams. Also we plan to the

Journal of American Science 2010;6(12)

http://www.americanscience.org editor@americanscience.org 289

design and implement of a mobile agent security
based on A Systematic Approach for modelling
Agent Mobility with other UML Diagrams.

Corresponding Authors
M. S. Al_Kholy
Systems and Computer Engineering Department,
Faculty of Engineering, Al-Azhar University, Cairo,
Egypt

Acknowledgement

The authors would like to thank Prof. Dr.
Mohamed Zaki, for his leadership, continued help,
support, and encouragement. We especially are
grateful to him for sharing his knowledge,
experience, and expertise.

9. References
1. Hsu C., Goldberg H.S.: Knowledge-mediated

retrieval of laboratory observations, Proc.
JAMIA, v.23:809--813(1999)

2. Lanzola G., Gatti L., Falasconi S., Stefanelli M.:
A framework for building cooperative software
agents in medical applications, Artificial
Intelligence in Medicine, 16, 223--249. (1999)

3. Judson, O.P.: The Rise of the Individual-based
model in Ecology, Trends in Ecology and
Evolution, 9, 9-14 (1994).

4. Jansen, J.: Using Intelligent Agents to Enhance
Search Engine Performance, Firstmonday,
No.2/3, http://www.firstmonday.dk (1996)

5. Russel, S.J. and Norvig, P.: Artificial Intelligence:
A Modern Approach, Prentice-Hall, Englewood
Cliffs, N.J. (1995).

6. Hayes-Roth, B.: An Architecture for Adaptive
Intelligent Systems. Artificial Intelligence:
Special Issue on Agents and Interactivity, 72,
329-365 (1995).

7. IBM's Intelligent Agent Strategy white paper,
http://activist.gpl.ibm.com:81/WhitePaper/ptc2.ht
m

8. Burgin, M.: Super-recursive Algorithms,
Springer, New York/Berlin/Heidelberg (2005).

9. Bauer, B. and Müller, J.P.: Methodologies and
Modeling Languages, in: Agent-Based Software
Development, Luck M., Ashri R. D’Inverno M.
(eds.) Artech House Publishers, Boston, London,
2004.

10. C. A. Iglesias, M. Garijo, and J. C. González. A
Survey of Agent-Oriented Methodologies.
Proceedings of Fifth International Workshop on
Agent Theories, Architectures, and Languages,
pages 185-198, University Pierre et Marie Curie,
1998.

11. F. J. Garijo, and M. Boman. Multi-Agent System
Engineering. Proceedings of MAAMAW'99.
Springer, ed., 1999.

12. M. Wooldridge, N. R. Jennings and D. Kinny.
The Gaia Methodology for Agent-Oriented
Analysis and Design. International Journal of
Autonomous Agents and Multi-Agent Systems, 3,
2000.

13. D. E. Herlea, C. M. Jonker, J. Treur, and N. J. E.
Wijngaards. Specification of Behavioural
Requirements within Compositional Multi-Agent
System Design. Proceedings of Ninth European
Workshop on Modelling Autonomous Agents in a
Multi-Agent World, pages 8-27, Springer, 1999.

14. F. M. T. Brazier, C. M. Jonkers, and J. Treur.
Principles of Compositional Multi-Agent System
Development. Proceedings 15th IFIP World
Computer Congress, WCC'98, Conference on
Information Technology and Knowledge Systems,
IT&KNOWS'98, pages 347-360, Chapman and
Hall, 1998.

15. C. M. Jonker, and J. Treur. Compositional
Verification of Multi-Agent Systems: a Formal
Analysis of Pro-activeness and Reactiveness.
Proceedings of International Workshop on
Compositionality (COMPOS'97), Springer, 1997.

16. D. Kinny, M. Georgeff, and A. Rao. A
Methodology and Modelling Technique for
Systems of BDI Agents. 7th European Workshop
on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW'96)., pages 56-71.
Springer, 1996.

17. D. Kinny, and M. Georgeff. Modelling and
Design of Multi-Agent Systems. Intelligent
Agents III, Springer, 1996.

18. Birgit Burmeister: Models and methodology for
agent-oriented analysis and design. In Working
Notes of the KI’96 Workshop on Agent-Oriented
Programming and Distributed Systems, 1996.
DFKI Document D-96-06.

19. A. Th. Schreiber, B. J. Wielinga, J. M.
Akkermans, and W. Van de Velde.
CommonKADS: A comprehensive methodology
for KBS development. Deliverable DM1.2a
KADSII/M1/RR/UvA/70/1.1, University of
Amsterdam, Netherlands Energy Research
Foundation ECN and Free University of Brussels,
1994.

20. Prometheus home page:
http://www.cs.rmit.edu.au/agents/SAC/methodolo
gy.shtml.

21. MESSAGE web site:
http://www.eurescom.de/public/projects/P900-
series/p907/

Journal of American Science 2010;6(12)

http://www.americanscience.org editor@americanscience.org 290

22. Ivar Jacobson, Grady Booch, James Rumbaugh:
The Unified Software Development Process,
Addison Wesley, 1998.

23. Model-driven Architecture:
http://www.omg.org/mda/.

24. Beck, K. Extreme Programming Explained.
Addison Wesley, 1999.

25. G. Booch, J. Rumbaugh, I. Jacobson, The Unified
Modeling Language User Guide, Addison-
Wesley, Reading, MA, 1998.

26. OMG, Unified Modeling Language: version 2.0
(UML 2.0), Final Adopted Specification, 2003,
http://www.uml.org/#UML2.0

27. FIPA Modeling TC, FIPA Modeling Area:
Deployment and Mobility,2003/05/13,
http://www.auml.org/auml/documents/Deployme
ntMobility.zip

28. Miao Kang, Lan Wang, and Kenji Taguchi,
Modelling Mobile Agent Applications in UML
2.0 Activity Diagrams, 2004/04/21,
http://www.auml.org/auml/supplements/UML2-
AD.pdf

6/21/2010

