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Abstract: Third and fourth order convergent methods based on cubic nonpolynomial spline function at midknotes 
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1. Introduction: 

In approximation theory spline functions 
occupy an important position having a number of 
applications, especially in the numerical solution of 
boundary-value problems. We shall consider a 
numerical solution of the following linear second 
order two-point boundary value problem, see [5]. 

( ) ( ) [ ]( 2 ) , , (1 .1)y f x y g x x a b+ = ∈
Subject to Neumann boundary conditions: 

( ) ( )(1 ) (1 )
1 2 0y a A y b A− = − =         (1.2) 

Where Ai , i = 1, 2 are finite real constants. The 
functions f(x) and g(x) are continuous on the interval 
[a,b]. The analytical solution of (1.1) subjected to 
(1.2) cannot be obtained for arbitrary choices of f(x) 
and g(x). 

The numerical analysis literature contains 
little on the solution of second order two-point 
boundary value problem (1.1) subjected to Neumann 
boundary conditions (1.2).while The linear second 
order two-point boundary value problem (1.1) 
subjected to Dirichlet boundary conditions solved by 
different types of spline functions, see [1, 7, 8, 9]. 

Ramadan et al. [5] solved the problem (1.1) 
subjected to (1.2) using quadratic polynomial spline, 
cubic polynomial spline and quadratic nonpolynomial 
spline at midknotes. 

In this paper, we develop cubic 
nonpolynomial spline at midkontes to get smooth 
approximations for the solution of the problem (1.1) 
subjected to Neumann boundary conditions (1.2). 

 

2. Derivation of the method: 

We introduce a finite set of grid points xi by 
dividing the interval [a, b] into n equal parts. 
xi = a + ih, i = 0, 1, ……, n 

x0 = a , xn = b  and  b a
h

n
−

=                               (2.1) 

Let y(x) be the exact solution of the system 
(1.1) and (1.2) and Si be an approximation to yi = 
y(xi) obtained by the spline function Qi(x) passing 
through the points (xi, si) and (xi+1, si+1). 

Each nonpolynomial spline segment Qi(x) 
has the form. 

( ) ( ) ( ) ( )sin cos , 0,1,..... 1i i i i i i i iQ x a k x x b k x x c x x d i n= − + − + − + = −     

                       (2.2) 

Where ai , bi , ci and di are constants and k is the 
frequency of the trigonometric functions which will 
be used to raise the accuracy of the method and 
equation (2.2) reduces to cubic polynomial spline 
function in [a,b]when k → 0 , Choosing the spline 
function in this form will enable us to generalize 
other existing methods by arbitrary choices of the 
parameters α and β which will be defined later at the 
end of this section. Thus, our cubic nonpolynomial 
spline is now defined by the relations: 

( ) ( ) ( ) [ ]1, , , 0,1, ......., 1
i i i

i S x Q x x x x i n
+

= ∈ = −

( ) ( ) [ ],i i S x C a b∞∈         (2.3) 
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The four coefficients in (2.2) need to be obtained in 
terms of  

1 1 1
2 2
, , ,i i ii i

S D M T a n d T ++ +
    Where 

( ) ( )1 1
2 2

i i i
i Q x S

+ +
=  

( ) ( ) ( )1
i i ii i Q x D=                                  (2.4)                                                         

( ) ( ) ( )2
1 1
2 2

i i i
i i i Q x M

+ +
=  

( ) ( ) ( ) [ ]3
1

1
2i i i ii v Q x T T += +  

We obtain via a straightforward calculation 

[ ] [ ]1 1 13 3 2
2

tan sec1 2 2,
2 2i i i i i i i

a T T b T T M
k k k

θ θ
+ + +

−
= + = + −

 

[ ] [ ]1 1 1 12 2 2
2 2

1 1
,

2 2 4i i i i i i i ii i

h h
C D T T d S M D T T

k k k+ ++ +
= + + = + − − +

                  (2.5) 
Where θ = kh and i = 0, 1, 2… n-1    

Now using the continuity conditions (ii) and 
(2.3), that is the continuity of cubic nonpolynomial 
spline S(x) and its first and second derivates at the 
point (xi, si), where the two cubics Qi-1(x) and Qi(x) 
join, we can have  

( ) ( ) ( ) ( )1 , 0 ,1, 2m m
i i i iQ x Q x m− = =          (2.6) 

Using Eqs. (2.2), (2.4), (2.5) and (2.6) yield the 
relations: 

[ ] ( )
( )

1 1 1 1 12 2
2 2 2 2

1 13 2

1 1
1 sec cos sec 12 22

tan 2 2 (2 .7 )
2 4

i i i i i i

i i i

h
D D S S M M

k k

h
T T T

k k

θ θθ

θ

− + − + −

− +

   + = − + − + −   

 
 + − + +
 
 

 

[ ]1 1
2

s i n s e c 2 ( 2 .8 )
2 2i i i

hh
D D M

k

θθ
− −

+ =

                                                                                                                                                                               

And 

( )1 1 1 13 2 2
2 2

tan sec cos sec2 2 22
2 i i i i i

T T T M M
k k k

θ θ θθ
− + + −
+ + = −

                  (2.9) 

From Eqs. (2.7) – (2.9) we get the following relation: 

( )2
3 1 1 3 1 1

2 2 2 22 2
2 , 2,3,..., 1

i i i ii i
S S S h M M M i nα β α

− + − +− −
− + = + + = −

            (2.10) 

Where 

( )2

2 2

2sin 2 sin 4sin 1 cos2 2 2
2 sin 2 sin2 2

And
θ θ θθ θ θ θ

α β
θ θθ θ

− + − +
= =

And 
( ) ( )i i i i i i i iM f S g with f f x and g g x= − + = =

 

The relation (2.10) gives (n-2) linear 
algebraic equations in the (n) unknowns Si+½ ,i = 
0,1,2, …. n-1, so we need two more equations, one at 
each end of the range of integration for direct 
computation of Si+½ . These two equations are 
deduced by Taylor series and the method of 
undetermined coefficients. These equations are 

( )(1) 2
0 1 3 0 1 1 3 2 5 3 7

2 22 2 2 2
1hS S S h w M w M w M w M at i− − + = + + + =

                                                                            (2.11) 

And  

( )(1) 2
3 1 0 1 1 3 2 5 3 7

2 22 2 2 2
,nn nn n n n

S S hS h w M w M w M w M at i n
− −− − − −

− + = + + + =

         (2.12) 

Where wi's will be determined later to get the 
required order of accuracy. 

The local truncation errors ti, i = 1, 2, …..n 
associated with the scheme (2.10) – (2.12) can be 
obtained as follows, we rewrite the scheme(2.10) – 
(2.12) in the form 

( )(1) 2 (2) (2) (2) (2)
0 1 3 0 1 1 3 2 5 3 7 1

2 22 2 2 2
, 1h y y y h w y w y w y w y t at i− − + = + + + + =

               (2.13) 

( )2 (2) (2) (2)
3 1 1 1 1 1

2 2 2 2 22
2 , 2,3,..., 1ii i i i ii

y y y h y y y t at i nα β α
− + − − +−

− + = + + + = −

             (2.14) 

And  

( )(1) 2 (2) (2) (2) (2)
3 1 0 1 1 3 2 5 3 7

2 22 2 2 2
,n nn nn n n n

y y hy h w y w y w y w y t at i n
− −− − − −

− + = + + + + =

           (2.15) 

The terms 1
2i

y
−

 and (2)
1
2i

y
−

…in Eq. (2.14) 

are expanded around the point xi using Taylor series 
and the expressions for ti, i = 2, … n-1 can be 
obtained. Also, expressions for ti ; i = 1, n are 
obtained by expanding Eqs. (2.13) and (2.15) around 
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the point x0 and xn, respectively, using Taylor series 
and the expressions for ti ; i = 1, n can be obtained as 

[ ] ( )

( ) ( )

( ) ( )

0 1 2 32 (2) 3 (3)
0 1 2 3

0 1 2 3 0 1 2 34 (4) 5 (5)

0 1 2 3 6 (6) 7

3 5 726
1 ( )

48 2

9 25 49 27 125 34380 242
384 8 3840 48

81 625 2401728
; 1, (2.16

46080 384

i i

i i

i
i

w w w w
w w w w h y h y

w w w w w w w w
h y h y

w w w w
h y O h i nt

+ + + 
− + + + + − 

 

+ + + + + +   
+ − + −   
   

+ + + 
+ − + = =
 

( )

( )

2 (2) 3 (3) 4 (4)

5 (5) 6 (6) 7

)

1 5 5
1 2

2 2 24 4 8

1 26 91 82
; 2,......... 1

16 48 48 5760 384 384

i i i

i i

h y h y h y

h y h y O h i n

β α β
α β α

α β α β














    − − + + − + − −       
 −   + + + + − − + = −       

 The scheme (2.10) – (2.12) gives rise to a 
family of methods of different orders as follows: 

For 1 10
12 12

andα β= =  

2.1 Third order method 
For (w0, w1, w2, w3) = (24, -1, 1, 0)/d1 where d1 = 24 
Then the local truncation errors given by equation 
(2.16) are 

( )

( )

5 (5 ) 6

6 (6 ) 7

247
, 1,

5760
1

, 2, 3, ....., 1
240

i

i

i

h y O h i n
t

h y O h i n

− + ==  − + = −


  

                        (2.17) 

2.2 Fourth order method 
For (w0, w1, w2, w3) = (6007, -981, 981, -247)/d2 
where d2 = 5760 
Then the local truncation errors given by equation 
(2.16) are 

( )

( )

6 (6) 7

6 (6) 7

23
, 1,

576
1

, 2,3,....., 1
240

i

i

i

h y O h i n
t

h y O h i n

 + ==  − + = −


 

                             (2.18) 

Remark 

(1) When 
8
6

8
1

== βα and   , then the 

scheme (2.10) is reduced to quadratic 
polynomial spline in [2, 3]. 

(2) When 
24
22

24
1

== βα and , then the 

scheme (2.10) is reduced to cubic polynomial 
spline in [4] 

(3) When  
12
10

12
1

== βα and , we get new 

scheme that produces numerical results better 
than both quadratic and cubic polynomial 
splines in [2, 3, 4]. 
               

3. Spline solutions: 
The spline solution of (1.1) with the 

boundary condition (1.2) is based on the linear 
equations given by (2.10) – (2.12), let 

( ) ( ) SYeEtTCCSSyY
iiiii

−=




===





=





=

+++ 2
1

2
1

2
1 ,,,  

 Be n-dimensional column vectors, then we can write 
the standard matrix equations for the nonpolynomial 
spline method in the form. 
(i) NY = C + T 
(ii) NS = C                      (3.1) 
(iii) NE = T 
 We also have N = N0 + h2BF; F = diag 







+ 2
1i

f  (3.2)                              

The three band symmetric matrix N0 has the 
form: 

           





























−

−

−

−

−

−

=

11

121

121

121

121

11

0 ON   

                      (3.3) 
 
The matrix B has the form: 





























=

0123

3210

wwww

wwww

B

αβα
αβα

αβα
αβα

O   

                                  (3.4) 
 
 
 

For the vector C, we have  
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2
1 0 1 1 3 2 5 3 7

2 2 2 2

2
3 1 1

2 22

2
2 0 1 1 3 2 5 3 7

2 2 2 2

, 1

, 2,3,......., 1

,

i i ii

n n n n

hA h w g w g w g w g i

C h g g g i n

hA h w g w g w g w g i n

α β α
− +−

− − − −

  + + + + =   
  = + + = −   
  − + + + + =   

                                                                (3.5) 

Set  N0 = M0 + J0                (3.6)  

Where                                                     





























−

−

−

−

−

−

=

31

121

121

121

121

13

0 OM
   

                                    (3.7) 
And 

0

2 0 0 0

0 0 0

0 0

0 0

0 0 0 2

J

 
 
 
 
 

=  
 
 
 
 
 

M

M
   

                       (3.8) 
 
4. Convergence analysis 

Our main purpose now is to derive a bound 

on
∞

E . We now turn back to the error equation 

(iii) in (3.1) and rewrite it in the form 
 

( ) ( )( ) TMBFhJMITBFhJMTNE 1
0

12
0

1
0

12
00

1 −−−−− ++=++==

 This implies that  

( )( ) 1
1 2 1

0 0 0E I M J h B F M T
−

− −
∞ ∞∞

∞

= + +

                       (4.1) 
 

In order to derive the bound on
∞

E , the 

following two lemmas are needed. 
 
Lemma 4.1 ([10]). If G is a square matrix of order n 

and G  < 1, then ( ) 1−+GI  exists and 

( )
G

GI
−

<+ −

1
11  

Lemma 4.2; the matrix ( )BFhJM 2
00 ++  is 

nonsingular if 
( )αβ 2

2
2

2

+
−

<
wh

wh
f  where 

( )( )22

8
1

habw +−=  

Proof. Since, 

( ) ( )( )2 1 2
0 0 0 0 0N M J h BF I M J h BF M−= + + = + +

 and the matrix M0 is nonsingular, so to prove  N 
nonsingular it is sufficient to show 

( )( )BFhJMI 2
0

1
0 ++ −  nonsingular. 

Moreover,  
( )m ax a x bF f f x≤ ≤∞

≤ =       (4.2) 

( ) [ ]
2

21 2
0 , 6

8
h

M b a h se e
−

−

∞
 ≤ − +
 

 (4.3) 

20 =
∞

J          (4.4) 

 
And βα +=

∞
2B         (4.5) 

Also, 
( ) ( )1 2 1 2

0 0 0 0.M J h B F M J h B F− −
∞ ∞ ∞∞∞

+ = +

                             (4.6) 
Therefore, substituting 

1
0 0, ,F M J and B−  in (4.6) we get  

( ) ( )( ) ( )
2

21 2 2 2
0 0 2 2

8
h

M J h BF b a h h fα β
−

−

∞
 + ≤ − + + + 

                (4.7) 

Since,   
( )αβ 2

2
2

2

+
−

<
wh

wh
f         (4.8) 

Therefore, Eq. (4.8) leads to 

( )1 2
0 0 1M J h B F−

∞
+ ≤         (4.9) 

From Lemma 4.1, it shows that the matrix N is 
nonsingular. Since , ( )1 2

0 0 1M J h B F−

∞
+ <  

so using Lemma (4.1)and Eq. (4.1) follow that 

∞∞

−

∞∞

−

∞ +−
≤

BFhJM

TM
E

2
0

1
0

1
0

1
     (4.10) 

From Eq. (2.17) we have 

( )5 (5 )
5 5

247
; max

5760 a x bT h M M y x≤ ≤∞
= =

Then 

( )3
2

0
1

0

1
0

1
hO

BFhJM

TM
E ≅

+−
≤

∞∞

−

∞∞

−

∞
 

                  (4.11) 
Also, from Eq. (2.18) we have 

( )6 ( 6 )
6 6

23
; m ax

576 a x bT h M M y x≤ ≤∞
= =  
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Then 

( )4

2
0

1
0

1
0

1
hO

BFhJM

TM
E ≅

+−
≤

∞∞

−

∞∞

−

∞
 

              (4.12) 

We summarize the above results in the next theorem.  
Theorem 4.1 

Let y(x) is the exact solution of the 
continuous boundary value problem (1.1) with the 
boundary condition (1.2) and 
let 1,.....1,0,

2
1 −=

+
niy

i
, satisfies the discrete 

boundary value problem (ii) in (3.1). Further, if 

2
1

2
1

2
1 +++

−=
iii

Sye      then 

1- ( )3hOE ≅
∞

, for third order convergent method 

2- ( )4hOE ≅
∞

, for fourth order convergent method 

Which are given by (4.11) and (4.12), neglecting all 
errors due to round off. 

 
5. Numerical examples and discussion: 

We now consider two numerical examples 
illustrating the comparative performance of cubic 
nonpolynomial spline method (ii) in (3.1) over 

quadratic nonpolynomial spline method and the two 
polynomial spline methods (quadratic and cubic). All 
calculations are implemented by MATLAB 7     
Example 1 
Consider the boundary value problem, see [5] 

( )2 1y y+ = −                        (5.1) 

( ) ( ) ( )
( )

( ) ( )1 11 c o s 1
0 1

s i n 1
y y

−
= = −  

The analytical solution of (5.1) is 

( ) ( ) ( )
( ) ( ) 1sin
1sin
1cos1

cos −
−

+= xxxy        (5.2) 

Example 2 
Consider the boundary value problem, see [5] 

( ) ( ) ( ) ( )2 2 33 sin 4 cosy xy x x x x x x+ = − − + +      (5.3) 
( ) ( ) ( ) ( ) ( )1 10 1 , 1 2 s i n 1y y= − =  

The analytical solution of (5.3) is 
( ) ( ) ( )xxxy sin12 −=                       (5.4) 

The numerical results of examples 1 and 2 
are presented in tables 1 and 2, respectively, for our 
fourth order method. A comparison between the 
method (2.10) and the existing methods in Ramadan 
et al. [5] are provided in tables 3 and 4. 

 
Table 1:  Approximate, Exact Solutions and Maximum errors (in absolute value) for Example 1 using our fourth order. 

n Si (approximated) yi (Exact) E (Error) 
4 0.13068504600377 0.13060321651340 8.18295–5a 
8 0.13727099391989 0.13726907762415 1.91630–6  
16 0.13893760135665 0.13893757908329 2.22734–8  
32 0.00841355938534 0.00841356124929 1.86395–9  
64 0.00423742716766 0.00423742736291 1.95255–10 
128 0.00212635927486 0.00212635928910 1.42408–11 

            a8.18295–5 = 8.18295*10-5 

Table 2: Approximate, Exact Solutions and Maximum errors (in absolute value) for Example 2 using our fourth order. 
n Si (approximated) yi (Exact) E (Error) 
4 - 0.35932989074946 - 0.35654365069809 2.78624–3 
8 - 0.34264531263123 - 0.34258197359850 6.33390–5 
16 - 0.29719707294621 - 0.29719640852255 6.64424–7 
32 - 0.02582552960734 - 0.02582552960734 6.88566–8 
64 - 0.01303052171412 - 0.01303052858255 6.86843–9 
128 - 0.00654464520562 - 0.00654464571154 5.05929–10 

 
Table 3: Maximum errors (in absolute value) for Example 1. 

n Our fourth order 
method 

Our third order 
method 

Quadratic 
nonpoly. [5] 

Cubic polyn. 
[5] 

Quadratic 
polyn. [5] 

4 8.18295-5 8.18295-5 1.43181-3 2.85364-3 3.03488-3 
8 1.91630-6 8.04854-6 1.75382-4 7.12633-4 7.69627-4 
16 2.22734-8 5.91344-7 2.16003-5 1.78109-4 1.93094-4 
32 1.86395-9 3.96416-8 2.67705-6 4.45241-5 4.83167-5 
64 1.95255-10 2.56011-9 3.33110-7 1.11308-5 1.208186-5 
128 1.42408-11 1.62945-10 4.15407-8 2.78270-6 3.02063-6 
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Table 4: Maximum errors (in absolute value) for Example 2. 
n Our fourth order 

method 
Our third order 

method 
Quadratic 
nonpoly. [5] 

Cubic polyn. 
[5] 

Quadratic 
polyn. [5] 

4 2.78624-3 3.27323-3 2.2425-2 4.62182-2 4.94551-2 
8 6.33390-5 3.03799-4 2.66946-3 1.15362-2 1.23088-2 
16 6.64424-7 2.17464-5 3.24076-4 2.88302-3 3.08111-3 
32 6.88566-8 1.43875-6 3.98761-5 7.20696-4 7.70391-4 
64 6.86843-9 9.22972-8 4.94425-6 1.80171-4 1.92590-4 
128 5.059294-10 5.84115-9 6.15517-7 4.50424-5 4.79946-5 

 
6. Conclusion: 

Two new methods are presented for solving 
second order two-point boundary value problem with 
Neumann conditions. These methods are shown to be 
optimal third and optimal fourth orders which are 
better than the two polynomial spline methods 
(quadratic and cubic splines) and quadratic 
nonpolynomial spline method. Moreover, 
nonpolynomial spline method has less computational 
cost over other polynomial spline methods. The 
obtained numerical results show that the proposed 
methods maintain a remarkable high accuracy which 
make them are very encouraging over other existing 
methods. 
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