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1. Introduction: 

Many problems in mathematical and 
engineering sciences are formulated in boundary 
value problems for third order differential equations 
as in physical oceanography and in the frame work 
of variational inequality theory and in many 
branches of pure and applied mathematics. For more 
details show [1, 2] 

We shall consider a numerical solution of 
the following linear third order two-point boundary 
value problem 

( ) ( ) [ ](3) , , (1.1)y f x y g x x a b+ = ∈  
Subject to the boundary conditions 
( ) ( ) ( )(1) (1)

1 2 3, , (1.2)y a k y a k y b k= = =  

Where , 1, 2, 3ik i =  are finite real 

constants, the functions f (x) and g(x) are continuous 
on the interval [a, b], the analytical solution of (1.1) 
and (1.2) cannot be obtained for arbitrary choices of 
f (x) and g(x). The numerical analysis literature 
contains other methods developed to find 
approximate solutions of these types of boundary 
value problems. Al-Said and Noor [3, 4] developed a 
second order method for solving a system of third 
order two-point boundary value problems using 
cubic and quartic polynomial spline functions 
respectively; Al-Said and Noor [5] have developed a 
second order finite difference method at midpoints. 
A.Khan and T.Aziz [6] established and discussed 
convergent fourth order method for this problem 
with the change in the boundary conditions 

( ) ( ) ( )(1 )
1 2 3, ,y a k y a k y b k= = =

using quintic polynomial spline functions. 
 S.ul.Islam et al. [8] have developed a 

smooth approximation for solving a system of third 

order obstacle problem based on nonpolynomial 
spline which provides bases for our method. 

In the present paper, Quartic nonpolynomial 
spline functions are applied to develop a new 
numerical method for obtaining smooth 
approximations to the solution of such third-order 
differential equation. The method is of order two for 
arbitrary α and β along with α + β = 1

2
 and   α ≠ 0, 

Which will be defined later at the end of the next 
section and better results will be obtained for 
choosing α less than β as we will see from the 
analysis of the local truncation error. And the method 
of order four for α = 0 along with α + β = 1

2
 , in 

section 2, we derive the consistency relations and 
develop the quartic nonpolynomial spline method for 
solving (1.1) subject to (1.2). In section3 and 4 are 
devoted for the spline solution and convergence 
analysis of the method. The numerical experiments 
are given in section 5. 

 
2. Derivation of the method: 

We introduce a finite set of grid points xi by 
dividing the interval [ ],a b into (n+1) equal 

subintervals where 
xi = a + i h , i = 0, 1, 2,……, n, n+1 
x0 = a  ,  xn+1 = b  and  h = 

1
b a
n
−
+

 (2.1) 

Let y(x) be the exact solution of the system 
(1.1) and (1.2) and Si be an approximation to yi=y(xi) 
obtained by the spline function ����� passing 
through the points (xi, si) and (xi+1, si+1). 
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Each quartic nonpolynomial spline segment 
����� has the form: 

����� � ��� 	
� ��� 
 ��� � �� ��� � �� 
 ��� 

�������������������� 
 ���� � ���� 
 ��� � ������� 

��������������������������������������������� � � ���� ���       (2.2) 

Where ai , bi , ci , di and ei are constants and k 
is the frequency of the trigonometric functions which 
will be used to raise the accuracy of the method and 
equation (2.2) reduces to quartic polynomial spline 
function in [a,b]when  k à 0  , Choosing the spline 
function in this form will enable us to generalize 
other existing polynomial spline methods for 
arbitrary choices of the parameters α and β which will 
be defined at the end of this section. Thus, this 
quartic  nonpolynomial spline is now defined by the 
relations: 

 

��������� � ������� � � ��� � ��� !� � � ���� �� � �  
 ���������� � "#���� �!                       (2.3) 

 
Following the technique of S.ul.Islam et al. [8] we 
let:  
����� � �� ���� ������ � � ��� ��� 

��
� ������ � �$���      

                                                    (2.4) 
��
�%������ � �&�������

�%������ � � �&�� � 
 For i = 0,1, ………,n, to obtain via a straight forward 
calculations 
 �� ��'% ()*+,-�)* ./0 112 034 1 5� 
�� ��
�'% ()*125������������������������������������������������������                
�� � (6*+,-�6*78 5 
 �9*7 
� 718 �&� ��

7�� -./01!��)*+,��)*!
12 034 1  

��� � $� �
'��&�
:� �� 

�� ���� 
�'% ()*+,-�)* ./0112 0341 5�                                 (2.5) 
 
Where θ = kh , i = 0, 1,…….., n  

Using the continuity conditions (ii) and (2.3) of the 
first and second derivatives at the point (xi, si) that 
is�������- 

�;����� � ���
�;������< � �� =                   (2.6) 

Using Eqs. (2.2), (2.4), (2.5) and (2.6) yield the 
relations:  

$� ��$�- ��='���� 
 ��- !

��='
��� 
 �>?:!�&� � &�- !

:% ��� :

�'

��&�- � &�!
:� �����������������������=@A� 
��� 

$� 
�$�- ���'����- 
 =�� � ��� �!

� �'
��� 
 �>?:!
:% ��� : �&�� 
 &�- !

� �'
�

:� �&�- 
 &�! �
'��>?�:
: ��� : �&�


 '�
=: ��� : �&�� � &�- !���������=@B�� 

���������������������������� 
Adding Eqs. (2.7) and (2.8) we get 

$� ������ � �='����� 
 ��- �! 
�
'�
:� &�

��'
��� 
 �>?�:!
=�:%?��: �&�� � =&�

� &�- ! �
'��>?:
=:?��: &� ���


 � '�
C:?��: �&�� � &�- !��������=@D�� 

������������������������� 
Similarly 

$�- �� �='���� 
 ���-�! 
 �
'�
:� &�- 

� '%�� 
 �>?�:!
=�:%?��: �&� � =&�- 

� &�-�! � �
'���>?:
=:?��: &�- 


 '�
C:�?��: �&� � &�-�!�������=@��� 

 
 
���$�  And $�-  are eliminated from equation (2.7) with 
the help of Eqs. (2.9) and (2.10) to get the following 
scheme: 

( ) ( )3
2 1 1 2 1 1 2,3,..., 13 3 ,i i i i i i i i i nS S S S h T T T Tα β− − + − + − = −− + − + = + + +  

              (2.11) 

Where    
( ) ( )i i i i i i i iT f S g with f f x and g g x=− + = =  

And
3

3

1 1 cos
2 sin sin

1 2 cos 1 cos
2 sin sin

θα
θ θ θ θ

θ θβ
θ θ θ θ

− = −  

− − = +  

                

The relation (2.11) gives (n-2) linear algebraic 
equations in the (n) unknowns Si  , i = 1, 2, …….,n, so 



Journal of American Science                                                                                                                 2010;6(12)   

  

http://www.americanscience.org            editor@americanscience.org 305 

we need two more equations, one at each end of the 
range of integration for direct computation of Si . 
Here, for our system (1.1) and (1.2) we also derive 
these two equations by Taylor series and the method 
of undetermined coefficients, these equations are:  

 
( )(1) 3

1 2 0 0 0 1 1 2 2 3 30
4 3 2 1S S S hS h w T w T w T w T at i− + =− − + + + + =

               (2.12) 
And  

( )0 1 2 3
(1) 3

2 1 1 1 2 33 8 5 2 ,n n n n n n n n i nS S S hS h T T T T atσ σ σ σ− − + − − − =− + − =− + + + +

    
                  (2.13) 

Where wi's and σi's will be determined later to get the 
required order of accuracy. 

The local truncation errors ti, i =1,2 ...n 
associated with the scheme   (2.11)– (2.13) can be 
obtained as follows:  

First we rewrite the scheme (2.11) – (2.13) in the 
form 

( ) ( ) ( ) ( ) ( )( )1 3 3 3 33
1 2 0 0 0 0 1 1 2 2 3 3 14 3 2 , 1y y y hy h w y wy w y w y t i− + =− − + + + + + =

     
    (2.14) 

( ) ( )3 (3) (3) (3) (3)
2 1 1 2 1 1 2,3,4,..., 13 3 ,i i i i i i i i i i ny y y y h y y y y tα β− − + − + − = −− + − + = + + + +  

        
 (2.15) 

And  
 

(1) 3 (3) (3) (3) (3)
0 1 2 32 1 1 1 2 33 8 5 2 ,nn nn n n n n ny y y hy h y y y y t i nσ σ σ σ− − + − − − − + − =− + + + + + = 

        
 (2.16) 

 

The terms (3) (3)
2 1, ,i iy y etc− +  in Eq. (2.15) are 

expanded around the point xi using Taylor series and 
the expressions for ti  , i = 2, … n-1 can be obtained. 
Also, expressions for ti ,i = 1,n are obtained by 
expanding Eqns. (2.14) and (2.16) around the point x0 
and xn , respectively, using Taylor series and the 
expressions for ti , i = 1, n can be obtained as follow:  

 

( )

[ ]

(3) (4) (5)3 4 5 1 2 3
0 1 2 3 1 2 30 0 0

(6) (7)6 7 81 2 3 1 2 3
0 0

(3) (4)3 4

4 92 1 7
( ) ( 2 3 ) ( )

3 2 30 2

8 27 16 811 31
( ) ( ) , 1

12 6 1260 24

1
1 (2 2 ) ( )i i

i

w w w
h y w w w w h y w w w h y

w w w w w w
h y h y O h i

h y h y

t

α β α β

+ +    − + + + + − + + + −         

 + + + + + − + − + =  
   

− − + + −

=
( )

(5)5

(6) (7)6 7 8

1 2 33 (3) 4 (4) 5 (5)
0 1 2 3 1 2 3

1 5
( )

2 4 2

1 7 1 17
( ) ( ) , 2,.... 1

12 6 40 24

4 911 4 49
( ) ( 2 3 ) ( )

3 3 60 2

(2.17)i

i i

n n n

h y

h y h y O h i n

h y h y h y

h

σ σ σ
σ σ σ σ σ σ σ

α β

α β α β

+   + −      

 − + + + + + − + = −     

+ + −   − + + + + + + + + −         

+ ( )1 2 36 (6) 7 (7) 81 2 38 27 16 8143 39
( ) ( ) ,

180 6 504 24n ny h y O h i n
σ σ σ σ σ σ






















+ +   + + −
+ + − + =   

  
  

 
The scheme (2.11) – (2.13) gives rise to a family of 
methods of different orders as follows: 
 

2.1 Second order method 
                 For arbitrary values of α and β along with 

α + β = 
 
�   , α ≠ 0  

0 1 2 3
2 7 1 1

( , , , ) ( , , , )
15 12 15 60

w w w w
−

=   

And 
 

0 1 2 3
157 19 11 2

( , , , ) ( , , , )
60 30 20 15

σ σ σ σ −
=  

 
Then the local truncation errors given by equation 
(2.17)are 

( )
( )

( )

7 (7 ) 8
0

5 (5) 6

7 ( 7 ) 8

29
, 1

2520
( 2 ) , 2, 3 , ..., 1

677
,

5040

i i

n

h y O h i

t h y O h i n

h y O h i n

α

− + =
= − + = −

 + =


              (2.18) 
So, better results occurred for choosing α less than β 

whose sum is 
 
�  

2.2 Fourth order method 

For α = 0    and   β = 
 
�  

0 1 2 3
2 7 1 1

( , , , ) ( , , , )
15 12 15 60

w w w w
−

=    And  

0 1 2 3
157 19 11 2

( , , , ) ( , , , )
60 30 20 15

σ σ σ σ −
=  Then the local 

truncation errors given by equation (2.17) are  
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( )

( )

( )

7 ( 7 ) 8

7 ( 7 ) 8

7 ( 7 ) 8

0
29

, 1
2520

1
, 2 , ......., 1

240
677

,
5040

i i

n

h y O h i

t h y O h i n

h y O h i n

− + =

= + = −



+ =

  

                         (2.19) 

Remark  

(1) When 1
12

α = and 5
12

β =  then the scheme 

(2.11) reduces to Al-Said and Noor method 
based on cubic polynomial spline [3].  

(2) When 1
24

α = and 11
24

β =  then the scheme 

(2.11) reduces to Al-Said and Noor [4], 
Usmani and Sakai [7] methods based on 
quartic polynomial spline.  

               
3. Spline solutions: 

             The spline solution of (1.1) with the 
boundary condition (1.2) is based on the linear 
equations given by (2.11) – (2.13).  
 
        Let Y = ( yi )  , S = ( Si )  , C = ( Ci   ), T = ( Ti ), 
E = ( ei ) = Y - S  
Be n-dimensional column vectors, then we can write 
the standard matrix equations for the nonpolynomial 
spline method in the form:  
 
(i) NY = C + T 
(ii) NS = C                        (3.1) 
(iii)  NE = T  
We also have N = N0 + h3BF; F = diag ( )if ,    (3.2) 

 
And the matrices N0 and B are defined by 

 

0

4 1

3 3 1

1 3 3 1

1 3 3 1

1 3 3 1

3 8 5

N

− 
 − 
 − −
 

− − =
 
 
 
 − −
  − − 

       (3.3) 

     
 
The matrix B has the form: 
       

1 2 3

3 2 1 0

w w w

B

β β α
α β β α

α β β α
σ σ σ σ

 
 
 
 
 

=  
 
 
 
 
               (3.4) 

   

For the vector C, 

[ ]
[ ]

3
3

1 2 0 0 1 0
1

3 3
1 1 0 0 3 1 2

3
2 1 1

3
3

3
0

3 2 ( ) , 1

( ) ( ) , 2

( ) ( ) , 3,4,........, 1

2 ,

J

J

i

i i i i

J

J

J J

J n J

k hk h w f k g w g i

k h k f h g g g g i
C

h g g g g i n

h k h g i n

α α β

α β

σ

=

=

− + −

=

=
−

  
− − + − + + =  

 
 − + + + + ==

+ + + = −


 − + =   

∑

∑

 

                      (3.5) 

 
4. Convergence analysis 

Our main purpose now is to derive a bound 

on
∞

E . We now turn back to the error equation 

(iii) in (3.1) and rewrite it in the form 

( ) ( )1 11 3 1 3 1
0 0 0E N T N h BF T I N h BF N T

− −− − −= = + = +
 which implies that:  

1 3 1
0 0E I N h BF N T− −

∞ ∞∞ ∞
= +     (4.1) 

 

In order to derive the bound on
∞

E , the 

following two lemmas are needed. 
 

Lemma 4.1, ([9]). If G is a square matrix of order   n 

and G
∞

< 1, then ( ) 1−+ GI  exists and 

( ) 1 1
1

I G
G

−

∞
∞

+ <
−

 

Lemma 4.2, the matrix ( )3
0N h B F+  is 

nonsingular, if 243
f

w
<  where:     

( )
( )

2
3

2

3
11 2

h
w b a

b a

 
= − + 

−  

 

Proof.  Since, 

( )3 1 3
0 0 0N N h B F I N h B F N−= + = +  and 

the matrix N0 is nonsingular, so to prove  N  is 
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nonsingular  it is sufficient to show 

( )1 3
0I N h B F−+  nonsingular. Moreover,  

( )m a x a x bF f f x
∞ ≤ ≤≤ =       (4.2) 

( ) [ ]1
0

3 2
32 3

( ) , 7
81 2
h h

N b a b a see−

∞

−  
≤ − + − 

 

 

               (4.3) 
 
 

0 1 2 3

11
3

B σ σ σ σ
∞
= + + + =       (4.4) 

Also, 1 3 3 1
0 0N h B F h N B F− −

∞ ∞∞ ∞
=  

                       (4.5) 
 
 

Therefore, substituting 
1

0,F N and B−
∞ ∞∞

 in (4.5) we get  

( ) ( )2
31 3

0

322
243 2

h b a
N h BF b a f−

∞

 −
≤ − + 

 

 

               (4.6) 
 

Since, 243
f

w
<         (4.7) 

Therefore, Eq. (4.7) leads to 
1 3

0 1N h B F−

∞
≤                       (4.8) 

From Lemma 4.1, it shows that the matrix N is 
nonsingular. Since 1 3

0 1N h B F−

∞
< , so using 

Lemma (4.1) and Eq. (4.1) follow that 
1

0

3 1
01

N T
E

h N B F

−
∞∞

∞ −
≤

−
       (4.9) 

From Eq. (2.18) we have 

( )5 (5)
5 52 ; max a x bT h M M y xα ≤ ≤∞

= =   

Then 

( )
1

0 2
3 1

01

N T
E O h

h N B F

∞∞

∞
∞ ∞∞

−

−
≤ ≅

−

 

                                   (4.10) 
 
Also, from Eq. (2.19) we have 

( )7 (7)
7 7

677
; max

5040 a x bT h M M y x
∞ ≤ ≤= =  

Then 

( )
1

0

1
0

4
3

.

1

N T
E O h

h N B F

−
∞∞

∞ −
∞ ∞∞

≤ ≅
−

 

              (4.11) 
We summarize the above results in the next theorem.  
 
 

Theorem 4.1 
Let y(x) be the exact solution of the 

continuous boundary value problem (1.1) with the 
boundary condition (1.2) and let , 1,2,.....iy i n= , 

satisfy the discrete boundary value problem (ii) in 
(3.1), further, if i i ie y S= −  then 

1- ( )2E O h
∞
≅ , for second order convergent 

method 
 

2- ( )4hOE ≅
∞

, for fourth order convergent 

method 
Which are given by (4.10) and (4.11), neglecting all 
errors due to round off. 
 
 

5. Numerical examples and discussion: 
             In this section we illustrate the numerical  
Techniques discussed in the previous sections by the 
following two boundary value problems of (1.1) and 
(1.2), in order to illustrate the comparative  
Performance of our method (ii) in (3.1) over other 
existing methods. All calculations are implemented 
by MATLAB 7   . 

Example 1: 

Consider the boundary value problem 
                   

( )3 3 2( 2 5 3) xy x y x x x e− = − − −        (5.1)                    
                  

( ) ( ) ( ) ( ) ( )1 10 0 , 0 1 , 1y y y e= = = −  

The analytical solution of (5.1) is 

               
( ) (1 ) xy x x x e= −

 

Example 2 

 Consider the boundary value problem 
                    

( )3 ( 4) sin (1 ) cosy y x x x x+ = − + −     (5.2) 
                   

( ) ( ) ( ) ( ) ( )1 10 0 , 0 1 , 1 sin (1)y y y= = − =  

The analytical solution of (5.2) is 

                  ( ) ( )1 s i ny x x x= −  
 

The numerical results for our fourth and 
second orders are summarized in tables 1-4 and 
compared with the other existing polynomial splines 
and finite difference methods. 
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Table 1:  The observed maximum absolute errors for Example 1 
 

h 
Fourth order method Second order method 

α = 0   ,  β = 
E
F α = 

E
EFG   ,  β = 

E
F - α 

1
16

 5.2992 – 7 1.5540 – 4 a 

1
32

 2.6127 – 8  4.1551 – 5 

1
64

 1.4999 – 9 1.0575 – 5 

1
128

  8.9762 – 11  2.6562 – 6 

a 1.5540 – 4 = 1.5540*10-4 

Table 2:  The observed maximum absolute errors for Example 1 

 

h 

Our fourth order 
method 

Islam 
 et al. [8] 

Al-Said and 
Noor [5] 

Al-Said and Noor 
[4] 

Al-Said and 
Noor [3] 

α = 0, β = 
E
F     

1
16

 5.2992-7 2.1974-5 8.1224-4 8.3597-4 1.6861-3 

1
32

 2.6127-8 1.6192-6 2.1812-4 2.2207-4 4.4510-4 

1
64

 1.4999-9 1.1006-7 5.5859-5 5.6432-5 1.1293-4 

1
128

 8.9762-11 7.1764-9 1.4091-5 1.4168-5 2.8340-5 

 

Table 3: The observed maximum absolute errors for Example 2 

 
 
 

 

 

 

 

 

 

h 
Fourth order method Second order method 

α = 0 , β =  
E
F α = 

E
EFG , β = 

E
F - α 

1
16

 2.3819 – 8 9.0774 – 6 

1
32

 1.1184 – 9  2.4289 – 6 

1
64

 6.3020 – 11 6.1842 – 7 

1
128

  3.7640 – 12  1.5534 – 7 
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Table 4:  The observed maximum absolute errors for Example 2 

 

h 

Our fourth order 
method 

Islam 
 et al. [8] 

Al-Said and 
Noor [5] 

Al-Said and 
Noor [4] 

Al-Said and 
Noor [3] 

α = 0, β = 
E
F     

1
16

 2.3819–8 9.2517–7 4.5978–5 4.8237–5 9.7501–5 

1
32

 1.1184–9 6.8079–8 1.2530–5 1.2948–5 2.5965–5 

1
64

 6.3020–11 4.5822–9 3.2356–6 3.2980–6 6.6004–6 

1
128

 3.7640–12 2.9515–10 8.1999–7 8.284–7 1.6573–6 

It is verified from the Tables 1- 4  that on 

reducing the step size from h to 
2
h

 the maximum 

error HIH is approximately reduced by a factor  
1

2 p  , where p is the order of the method which 

confirms that our method is a second and fourth 
orders convergent as predicted in section 4. 
 
6. Conclusion: 

Two new methods are presented for solving 
third order two-point boundary value problem using 
quartic nonpolynomial spline functions. These 
methods are shown to be optimal second and optimal  
fourth orders which have better accuracy compared 
with Al-Said and Noor [3-5] and S.ul.Islam et al [8]. 
The obtained numerical results show that the 
proposed methods maintain a very remarkable high  
accuracy which make them are very encouraging for 
dealing with the solution of two-point boundary value 
problems. 
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