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1. Introduction 
        There has been increasing interest in hybrid 
control in recent years, due to its potential to 
overcome limitations of adaptive control and benefits 
in controlling of systems that cannot achieve the 
desired performance by a single controller. Indeed, 
hybrid control scheme provides an effective 
mechanism when facing large modelling uncertainty 
and highly complex systems. Even for simple linear 
time invariant systems, controllers switching can be 
utilized in improving the performance (Sun, 2005, 
Feuer, 1997, and McClamroch, 2000). To date, 
Morse, Hespanha and Liberzon have established a 
theoretical backbone for hybrid controllers (Morse, 
1997, Hespanha, 1999, and Liberzon, 2003). By now, 
stabilizing a continuous system via hybrid output 
feedback has attracted a number of authors, such as 
(Santarelli, 2008) where a comparison between the 
responses of the switching controller and two other 
forms of LTI control have been made. An 
experimental assessment of controller switching with 
state and control magnitude constraints is carried out 
in Kogiso, 2004. In Zheng, 2006, the multi-objective 
robust control of an induction motor with tracking 
and disturbance rejection specifications is proposed 
via switching. In Essounbouli, 2006, DeCarlo, 1988, 
and Jamshidi, 2010 controller switching has been 
proposed to improve the trade-offs in design multi 
objectives. 
        Supervisory control employs logic-based 
switching for adaptation, instead of continuous tuning 
of parameters as in conventional adaptive control. 
This type of switching-based supervisory control 

scheme consists of the following subsystems: a plant 
to be controlled, a bank of controllers, and a 
switching logic. Dwell-time method is representative 
of the trajectory independent switching logic for 
supervisory control (see Yoon, 2007 and its 
references). On the other hand, Lyapunov functions 
are employed in such trajectory dependent switching 
methods as in Yoon, 2007. 
        In an actual engineering control problem, 
different contradictory requirements must be satisfied 
such as attenuation of various types of disturbances, 
set point tracking, bounds on the signal peaks, and 
robustness to changing conditions and plant 
uncertainties. The synthesis problems with a 
combination of performances are known as multi 
objective control. General multi objective control 
problems are difficult and remain mostly open up to 
date. The usual approach for the general multi 
objective control problem is to find a controller 
transfer matrix for all objective designs and to use the 
same Lyapunov matrix for the separate design 
specifications. Though meeting all the objectives of a 
control application is desirable, the design of a single 
multi-objective controller is a trade-off among 
competitive problems such as disturbance rejection, 
tracking, regulation, constraints of the signals…. So a 
single controller may be restrictive (Boyd, 1991, 
Scherer, 1997, and Khargonekar 1991). 
        The mixed H2/H∞ control is an important robust 
control method and has been studied by many 
researchers. The mixed H2/H∞ control is concerned 
with the design of a controller that minimizes the H2 
performance of the system with respect to some 
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inputs while guarantees certain worst case H∞ 
performance with respect to other inputs. In 
engineering applications, the mixed H2/H∞ control is 
more attractive than the sole H∞ control since the H∞ 
control is a worst-case design which tends to be 
conservative whereas the mixed H2/H∞ minimizes the 
average performance with a guaranteed worst-case 
performance.  
        Here, the H2/H∞ control problem of complex 
systems is treated using switching controller. That is, 
the desired plant behavior is achieved by switching 
between pre-designed controllers, each to meet a set 
of relevant specifications. Our aim is using switching 
controller to reduce the conservatism of the controller 
synthesis and the resultant performance degradation; 
therefore, we apply the concept of multiple 
controllers and utilize the switching signal to 
orchestrate the switching among pre-designed 
controllers to improve performance of closed-loop 
system.  
        In this paper, we present a new switching logic. 
At every time instant, we search for a controller 
corresponding to the best performance. We then 
decide whether to switch to that controller or not by 
comparing the value of Lyapunov function at the 
previous switching instant to this controller with its 
prospective value that would result from the 
switching; if a certain inequality condition is 
satisfied, switching is allowed. We then further 
employ a dwell-time algorithm together. We show 
that asymptotic convergence is ensured by the 
proposed switching control scheme resulting from the 
combination of the Lyapunov-function-based 
switching and the dwell-time switching. 
        This paper is organized as follows: Section 2 
presents the system definition, and the controllers 
used in this paper. The problem of synthesis 
switching signal is described in Section 3. A simple 
illustrative example is presented in Section 4. Section 
5 contains some concluding remarks. 
 
2. Problem Statement 
        This paper presents a controller design strategy 
for fulfilling H2/H∞ control objectives resulting in no 
compromise between distinctive specifications. 
Instead of considering all of the objectives in a single 
controller, switching between these controllers in the 
timely manner is proposed to meet the desired 
performance. In this case, we can obtain our multi-
criterion goal without introducing conservatism to the 
problem, as each specification or a set of relevant 
objectives are assumed to be accomplished by a 
single controller without considering any 
contradictory objective in the design procedure. As 
switching can cause instability, a new switching 
strategy is introduced that lets switching based on 

either dwell time switching or multiple Lyapunov 
function. 
        The state-space realization of the LTI plant, , 
for which H2 and H∞ output-feedback controller is 
designed is as follows:  

P

:
u C w

z zu C zw

y yw

x Ax B u B w

P z C x D u D w

y C x D w

   


  
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

                              (1) 

xnx R  is state,  is the exogenous input 
signal (noise, disturbance and reference input), 

 is the control input, 

wnw R

un
Cu R yny R  is the 

measured output and is the output to be 
regulated and defines the performance objectives of 
the closed loop system. The assumptions of H2 and 
H∞ controls are true. The diagram of the closed loop 
system is depicted in Figure 1.  

znz R

z w 
P   

y uC 

Controller  
 

Figure 1. The Standard Diagram for H2 and H∞ 
Controls 
        The standard H2/H∞ performance criterion is 
considered: The objective is synthesis of the 
switching controller that internally stabilizes the 

closed loop system and minimize 
2 2 2w zT   while 

w zT 
  

 . ,  is 

the exogenous input and  is the controlled 

output (Scherer, 1997). The available design methods 
in addition to convex optimization problem defined 
by different Linear Matrix Inequalities (LMI) for H2 
and H∞ closed-loop specifications given in Scherer, 
1997 is used to find transfer matrices of the 
controllers.  

1
i iw R w

z 

 2,i I H H  

iL zi

        Figure 2. illustrates the closed loop 
configuration used in this context, where u  denotes 
the control input, Py  the process output,  a 

bounded reference signal (set point), d  unknown but 
bounded input disturbance, and  unknown but 
bounded measurement noise. The process is a LTI 
system with strictly proper transfer matrix 

r

n

 PH s . 

 , ,P P PA B C  is a minimal realization for  PH s . 

For the sake of conformity of the closed loop 
configuration in Figure 2. and the closed loop block 
diagram in Figure 1., the dashed line in Figure 2. is 
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considered as P in Figure 1., external inputs 

r

d

n

 
 
 
  

 in 

Figure 2. forms w  in Figure 1.  

 
Figure 2. The Closed Loop Configuration 
 
3. Purposed Switching Signal 
        We present a switching logic using the Multiple 
Lyapunov functions in Liberzon, 2003. The proposed 
algorithm is referred to as MLFS  and is given as 

follows: (Algorithm MLFS ) 

1- Initialize  and   t

 


i 

 t

2- Find the best controller: i :  = arg Best Controller

3. If , and  t t  i

i

  i i iV t V t                                                         (2) 

 .iV

 t 

 is the Lyapunov function of the closed loop 

system with th controller,  is the last time that 

switching to i th controller occurred, then let 

 and t t .  

i
it



4. t t  and go to step 2. t  
        Switching takes place in MLFS  when two 

conditions are met: firstly there should be a better 
controller leading to the better performance, and 
secondly the inequality in (2) should hold to grantee 
the stability according to the following Lemma. 
Lemma. 1. (Liberzon, 2003): Let   ,ix f x I i   

be a finite family of globally asymptotically stable 
systems, and let ,iV i I  be a family of 

corresponding radially unbounded Lyapunov 
functions. Suppose that there exists a family of 
positive definite continuous functions ,iW i I  with 

the property that for every pair of switching times 

 such that  and 

(  for , we have 

. Then the 

switched system is globally asymptotically stable. 

 , ,  p qt t p q

  ikt 

  i qV x t V

 
p k t t

   -t W 

 p qt t I 

 pt

i 

qt

i xi px

        In other words, switching is not allowed even 
when there is a better controller, if use of this new 
controller violates the condition given in (2). 
Checking the two conditions implies that both 

stability and performance is considered in MLFS . 

Using this algorithm, switching system is 
asymptotically stable, the state variables are bounded 
and converge to zero, and all the signals remain 
bounded. 
        A dwell time, D , is a lower bound for the 

difference between two consecutive switching 
instants; switching is allowed after waiting for the 
dwell time. Here we combine the dwell-time 
algorithm with switching logic proposed above. A 
switching logic using the dwell time switching is 
referred to as DS  which is time dependent and 

trajectory independent. 
Lemma. 2. (Liberzon, 2003): The switched system 

ix A x  is asymptotically stable if the time interval 

between consecutive switching instant between their 
asymptotical stable subsystems is not smaller than 

supD
i I

 i

i

a




 
 
 

. Where i iA t a te e i  and 

 
 

max

min

logia  i

i

M

M




 

 

 i, M  is the modal matrix (i.e. 

the matrix with eigenvectors as its columns) of the 
stable matrix iA  and  and  iM max  min iM  are 

the maximum and minimum singular values of iM , 

respectively. The positive scalar i  is simply the 

absolute value of the real part of the eigen values iA  

nearest to the imaginary axis (stability degree of 
stable matrix iA ). 

        As there are two switching logics involved, we 
use two subscripts for switching times to clarify 
which logic causes the switching; let ,p qt  denote the 

switching instant which is due to the q th switching 

by DS  in a row after the th switching by the p

MLFS . ,0pt  denotes the th switching instant due to 

switching by 

p

MLFS . 

        If there exists other controller with better 
performance but the condition (2) for MLFS  does not 

hold for  , ,p q p q Dt t t     , then DS  forces 

switching to take place, leading to , 1 ,p q p q Dt t    . 

If the condition in (2) holds for some 

 , ,p q p q Dt t t    then switching results from 

MLFS , leading to 1,0pt t  . 

        The two switching logics MLFS  and DS  are 

employed together in the proposed switching control 
scheme; as a result, switching takes place whichever 
logic allows without destroying stability as is shown 

yp 

+ + 

- 

+ 
u uc 

nd 

r controller Process 
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below. The proposed switching logic is referred to as 

MLF DS S

,0

, and is depicted in Figure 3. 

        Plant with each controller forms a linear 
subsystem of switching signal. Suppose that at time 
instant pt  switching to  th subsystem has occurred 

by 

i

MLFS  logic. The subsystems that switchings to 

them have occurred in the time interval  

by 

,0 1,0p pt t 

DS

 i

 logic can be considered as a subsystem of 

switching system with zero input nonlinear dynamic 
x f x  which is asymptotically stable according 

to Lemma 2. 
        As a result, the asymptotically stable linear 
subsystems, iA , under switching logic MLF DS S  is 

a combination of the asymptotically stable linear 
subsystems, iA , and the asymptotically stable non 

linear subsystems, if , under MLFS  switching logic. 

If all the linear subsystems that switch together 
consecutively by DS

i

 switching logic, and their 

switching start from th subsystem are considered as 
one nonlinear subsystem, the number of subsystems 
is bounded. And according to Lemma 1 are 
asymptotically stable. 

 
Figure 3. The Proposed Switching Logic MLF DS S  

 
4. Example 
        In this section, we briefly illustrate the 
enhancement of multi objective control performance 
via switching. The proposed approach is applied to 
the dynamic model of the roll angle of an aircraft 
taken from Vegte, 1994, and Hespanha, 2002: 

     
1000

0.875 50PH s
s s s




 
                              

        In this example, it is considered that white 
measurement noise with a large variance is injected 
in the time intervals  18 40t  ,  73 93t   and 

 128 148t  . In the presence of the measurement 

noise, noise rejection and the slower response are the 
objectives, while in the absence of the measurement 
noise a fast response and good tracking should be 
considered in the design procedure. This design 
problem is a multi-objective problem with conflicting 
criteria, because if a controller has low closed-loop 
bandwidth and is therefore not very sensitive to 
noise, it will exhibit a slow response and if a 
controller has high bandwidth and is therefore fast, it 
will be very sensitive to noise. 
        Following realization is considered for  PH s : 



-50.875 -43.75 0 1

1 0 0 0

0 -1000 0 0

PP BA

x x u

   
       
      





 0 0 1

P

P

C

y x


 

        It is easy to find that  0 1000 0Py x  . 

Since u uC d  , w

r

d

n

 
   
  

 and Py r n y   : 



-50.875 -43.75 0 1 0 1 0

1 0 0 0 0 0 0

0 -1000 0 0 0 0 0

u w

C

BA B

x x u w

     
            
          



  

   0 0 1 1 0 1

y ywC D

y x w   
 



        To have a good measurement noise rejection the 
controller, 

2HK , with more robust performance 

regarding measurement noise is designed using 
LQG/LQR. The regulator gains are computed by 
minimizing the cost 

      2 2 2

0

1
lim 100

T

P P C
t

J E y t y t u t
T

dt
    
  

   

.

The design of the optimal LQG gain was done 
assuming that the load disturbance, d , and the 
measurement noise, n , were uncorrelated white 

noise processes with    t d tE d      and 

      E n t n t    110, where  . It is 

easy to show that 

00,cnt t t   

arg Best Controlleri   

 t t   i  

     ii iV x t V x t p  

cnt cnt t    

Dcnt   

t t t    t t t  

  :

0

i

t i

cnt

t t

 


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    2 2
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1
lim

T T

t
J E z t z t dt


T

  
   

2 2

2

2w zT  , 

where  and 2 C z y y u    2

d

nw



 
 
  


 , in 

other words  


22

2

0 0 1 0

0 -1000 0 0
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P

P C

C

D uC

y

z y x u
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
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2

1 0

0 0

0 0
wB

 
   
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




t is clear 

that,  and 
2 2

0z wD     

        To get a relatively good tracking and to prevent 
the extra increasing of the value of input signal, the 
controller, HK


, is designed by minimizing 

w zT
  

 where w  and: r

w

w 

 



0 0 -1 0 1 0 -1

0 0 0 1 0 0 0

z uz z

C
C

DC D

y
z x u

u

 


       

          
        

 

0 0 -1 0 1

0 0 0 1 0

z u z wz

C
C

D DC

y
z x u

u

  


       

          
       

w 

  

        In Figure 4, the left plots show the closed-loop 
response of controller HK


 and the right plots show 

the closed-loop response of controller 
2HK  to a 

square set point. It can be seen from this Figure that 
the controller HK


 exhibits a faster response but is 

more sensitive to measurement noise. The top plots 
show the output, Py , and the bottom plots the 

tracking error, . y

        The left plots in Figure 5 show the closed-loop 
response of the switching controller, switchingK , to 

square reference. This structure inherits the fast 
performance of HK



2

 in normal cases, and a good 

noise rejection of HK  in the presence of the white 

measurement noise.  
        Using Lemma 2 the minimum time interval 
between consecutive switching between controllers 

2HK  and HK


 is equal to 22.9083D s  .  
2KV t  

and  denote the Lyapunov functions of closed 

loop system with controller 

KV


t

2HK  and HK


 at time 

instant t , respectively. 

        In time interval  0 18  controller HK


 and in 

time interval  18 38  controller 
2HK  are in the 

loop. Since  0KV V


 K
38 , according to 

algorithm we can switch to controller HK


. At 

73t  , because of the time interval between 
consecutive switching is , 
according to Figure 3. without checking inequality 
(2) we switch to controller 

73 38 22.90 

2

83

HK . Since 

   93KV


38KV


 , according to Figure 3, we check 

the constraint (2) until 22.9083D s   after previous 

switching. Any time that the constraint is satisfied, 
we can switch to controller HK



73

. Since during this 

time interval the constraint is not satisfied switching 
to controller is occurred at Dt   . At 128t   

similar to t 73  we switch to controller 
2HK . Since 

   148KV


93KV


 , according to Figure 3, we 

check the constraint (2) until 22.9083D s   after 

previous switching. Any time that the constraint is 
satisfied, we can switch to controller HK


. At 

148t .03  the constraint is satisfied and switching to 
controller HK


 is occurred. 

        The right plots show the closed-loop response of 
the common multi objective controller 

2 /H HK


 that 

2 2 2
minimize w zT  , rsubject to T z 

 
  (a 

single controller that considers both design objectives 
concurrently). The top plots show the output, Py , 

and the bottom plots the tracking error, . y

        The comparison illustrates the conservatism 
reduction by means of the switching controller in 
comparison with the performance of the common 
multi objective controller. As depicted in this Figure, 
it is apparent that we have approached meeting both 
design objectives better using the switching 
controller. It can be seen, from Table 1. that the 
switching controller minimizes the 2- norm and ∞- 
norm of tracking error, , in comparison with other 

controllers. 

y

Table 1. The Performance of the Controllers 
 

2HK
 HK

  2 /H HK
  switchingK

 

2

sup
n

y

n


 
3.658 3.8836 4.7811 3.6575 

2

2

sup
n

y

n
 

84.162 83.2744 100.334 82.0997 

 
5. Conclusion 



Journal of American Science, 2010;6(12)                                                         http://www.americanscience.org   

 

        In this paper, a switching H2/H∞ controller is 
developed. This structure allows us to take the 
benefits of both H2 and H∞ controllers and to 
efficiently eliminate their disadvantages. The 
transients caused by switching may result in 
instability which is avoided by appropriate choice of 
switching signal. Purposed new switching signal is 
the combination of dwell time switching and multiple 
Lyapunov function. The simulations illustrate that a 
switching controller scheme inherits characteristics of 
all the controllers in the time intervals they have been 
in the loop, and diminish the performance 
degradation caused by considering all the control 
objectives in the design of a unique controller. 
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Figure 4. The Closed Loop Response of HK
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Figure 5. The Closed Loop Response of Supervisory 
Based Switching Controller, switchingK
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