Effect of yeast (*Saccharomyces cerevisiae*) on reduction of aflatoxicosis, enhancement of growth performance and expression of neural and gonadal genes in Japanese quail

Mariam G. Eshak¹, Wagdy K.B. Khalil¹, Eman M. Hegazy², Ibrahim M. Farag¹, M. Fadel³ and Farid K.R. Stino⁴

¹Cell Biology Department, National Research Centre, Dokki, Giza, Egypt.
 ²Food Toxicology and Contaminants Department, National Research Centre, Dokki, Giza, Egypt.
 ³Microbial Chemistry Department, National Research Centre, Dokki, Giza, Egypt.
 ⁴Faculty of Agriculture, Cairo University, Egypt.
 <u>mgergis@yahoo.com; wagdykh@yahoo.com</u>

Abstract: The present investigation was designed to evaluate the role of yeast, *Saccharomyces cerevisiae* (SC) in the reduction of aflatoxicosis induced by aflatoxin B_1 (AFB₁) in Japanese quail. Sixty male quail were used and distributed into six groups. The first group received basal diet. The other five groups received the basal diet plus 0.5 mg AFB₁/kg diet. Four of them received increasing levels of SC (0.5, 1.0, 2.0 and 2.5 gm/kg diet, respectively). All groups received their prospective diets for 35 days. The birds were weighed weekly to determine body weight (BW) and body weight gain (BWG). The results showed that addition of the SC to AFB₁-containing diet significantly reduced the adverse affect of AFB₁ on quail BW and BWG. The concentrations of AFB₁ had been lowered in the breast muscle and liver samples of quail fed diet containing AFB₁ plus SC than those found in such quail organs of AFB₁ group. The expression levels of SC compared to those of AFB₁ group. It could be concluded that SC supplementation to quail diets suppressed the aflatoxicosis in quail tissues leading to improvement of growth performances and enhancement of expression levels of neural and gonadal genes. Thus, the use of HPLC and gene expression analysis might contribute in detecting aflatoxin contamination in the poultry industry in Egypt.

[Mariam G. Eshak, Wagdy K.B. Khalil, Eman M. Hegazy, Ibrahim M. Farag, M. Fadel and Farid K.R. Stino. Effect of yeast (*Saccharomyces cerevisiae*) on reduction of aflatoxicosis, enhancement of growth performance and expression of neural and gonadal genes in Japanese quail. Journal of American Science 2010;6(12):824-838]. (ISSN: 1545-1003). http://www.americanscience.org.

Key words: Quail; body weight; growth rate; yeast; aflatoxin B₁; sqRT-PCR; gene expression.

1. Introduction:

Aflatoxins are a group of closely related, biologically active mycotoxins which are produced by storage fungi during growth on a number of foods and feed materials (Abo et al., 1995 and Oliveria et al., 2002). Aspergilla are the most common fungal species that can produce aflatoxins (AFs) in food and feedstuffs (Oliveria et al., 2002 and Abousadi et al., 2007). Among the different types of AFs produced, AFB₁ is the most prevalent and potent and is often found in high concentrations in cereal grains and peanut meal, which comprises between 50 and 60 percent of many poultry diets (Stanley et al., 1993; Miazzo et al., 2000; Parlat et al., 2001 and Gowda et al., 2004). Aflatoxicosis due to AFB_1 in poultry, causes listlessness, anorexia with lowered growth rate, immunosupression, decreased body weight gain. poor feed utilization, reduced egg production and increased mortality (Oguz and Kurtoglu, 2000; Oliveria et al., 2002 and Abousadi et al., 2007).

Removing AF from contaminated food and feedstuffs remains a major problem and there is a great demand for effective decontamination technology. These procedures have focused on degrading, destroying, inactivating or removing AF bv physical (heat. irradiation). chemical (ammoniation, sulphites, hypochlorides, ozone), nutritional (vitamins, minerals) or biological (bacteria, yeast) methods (Stanley *et al.*, 1993; El-Nezami et al., 2000; Raju and Devegowda, 2000; Galvano et al., 2001; Abousadi et al., 2007 and Tovar-Ramirez et al., 2010). A successful detoxification process must be economically capable of eliminating all traces of a toxin without having harmful residues and must not impair the nutritional quality of the commodity (Leeson et al., 1995 and Kubena et al., 1998). One approach of many to this problem is the use of the yeast Saccharomyces cerevisiae (SC) and its cell wall component (manner oligosaccharide) for minimizing the adverse effects of AF in poultry on the basis of biological

degradation (Parlat et al., 2001). This approach will not only benefit human health but also result in increased profit and productivity of poultry (Galvano et al., 2001). The inclusion of SC (1gm/kg) to the AFB₁-containing diet provided significant improvements on the adverse effects of AFB₁ (5 mg/kg) in broiler chicks fed for 28 days (Stanely et al., 1993). Also, Raju and Devegowda (2000) extracted mannan oligosccharide, which was believed to be responsible for the beneficial effect against AFB_1 from the wall of SC. They added (1gm/kg) to AFB₁-containnated feed and reported significant amelioration on the adverse effect of AFB₁ (0.3mg/kg) in broiler fed for 35 days. Moreover, Abousadi et al. (2007) observed that the addition of SC (0.2%) to AFB₁-containing diet significantly improved the adverse effect of AFB_1 (125 ppb) on growth performances in broiler chicks fed for 21 days. In quail, Parlat et al., (2001) reported that the supplementation of SC (1gm/kg) to the AFcontaining diet significantly reduced the deleterious effect of AFB1 (2.5mg/kg diet) on body weight and body weight gain in birds fed for 35 days (Parlat et al., 2001)

The present study was designed to investigate the role of SC in reducing aflatoxicosis caused by AFB_1 in Japanese quail. Therefore, the measurements of growth performances and the concentrations of AFB_1 in some quail organs were determined. Moreover, the expression levels of some neural(Glycerinaldehyde-3-phosphate ehydrogenase, GAPDH, neural cell adhesion molecule, NCAM, and Cadherin-2, CDH2) and gonadal (Cytochrome P450 cholesterol side chain cleavage, P450scc) genes were studied.

2. Materials and Methods

Birds and diet:

Sixty unvaccinated 14 days old male Japanese quail chicks were obtained from the quail project, Faculty of Agriculture, Cairo University. The quail were divided into six groups. Each group of 10 quail, were weighted and placed in a heated wooden brooder (battery cage). The birds received 24 h of light per day (continues light) for the duration of the experiment. They also received ad lib., water and a commercial growing quail ration (basal diet) containing 24% protein and 2,900 Kcal ME/Kg diet. The diet also contained all the required amino acids, and minerals according vitamins to the recommendations of the National Research Council (NRC, 1994). without adding antibiotics, coccidiostats or growth promoters. All animals received humane care in compliance with the

guidelines of the Animal Care and Use Committee of Faculty of Agriculture, Cairo University, Egypt.

Aflatoxin B₁ (AFB₁):

AFB₁ used in this experiment was purchased from Sigma (Buchs, Switzerland). Twenty five milligrams of pure crystalline of AFB₁ were dissolved in chloroform. The chloroform solution was placed in a flask, and kept in a water bath at 60° C until complete evaporation of the solvent. Then AFB₁ was dissolved in 500 ml sterile maize oil. This solution was then added to 50 kg basal diet and homogenized to obtain the required final levels of AFB₁ which was 0.5mg of AFB₁/kg diet according to procedure of Soares and Rodrigues-Amaya (1989).

The appropriate experimental doses of AFB_1 that affect quail organs were determined previously by Sinsek *et al.* (2007). These appropriate doses ranged from 0.5 to 6.0 mg of AFB_1/kg diet.

Saccharomyces cerevisiae (SC):

SC was obtained from Microbial Chemistry Department, National Research Centre, Giza, Egypt. The SC culture was supplied at four rates, 0.5 gm, 1.0 gm, 2.0 gm and 2.5 gm/kg of feed. The live yeast was added to the appropriate diets mixed in cooking grade soybean oil. The soybean oil-SC suspension was added to the feed in the final mix as the last step in mixing, such as would occur commercially according to the procedure of Parlat *et al.* (2001). The AFB₁ was incorporated into the mixed feed before SC was added.

Experimental design:

Six groups of quail were supplemented with six dietary treatments as follows; (1) control, basal diet; (2) basal diet plus 0.5 mg of AFB₁/kg diet; (3) basal diet plus 0.5 mg of AFB₁ plus 0.5 gm of SC/kg diet; (4) basal diet plus 0.5 mg of AFB₁ plus 1.0 gm of SC /kg diet (5) basal diet plus 0.5 mg of AFB₁ and 2.0 gm of SC/kg diet (6) basal diet plus 0.5 mg of AFB₁ plus 2.5 gm of SC /kg diet.

Performance parameters: a) Growth performance

The trial period was carried out for 5 weeks. During the experiment, the birds were weighed weekly to determine their body weight (BW) and body weight gain (BWG) at 14, 21, 28, 35, 42 and 49 days of age after fasting for 8 hours, to the nearest gram using a digital scale. The cumulative body weight gains were calculated by subtracting W2-W1.

After the end of the experiment, all birds were euthanized. Liver, brain, testis and breast muscle were collected, in order to (i) determine the aflatoxin concentrations in breast muscle and liver samples by using HPLC analysis and (ii) to evaluate the expression levels of some neural and gonadal genes by using sqRT-PCR method.

b) Analysis of toxin residues in quail organs:

Samples of liver and breast muscle were collected, squashed, homogenized and extracted by using acetonitrile-water solution (85/15) (v/v). The sample extraction was filtered and diluted (5ml) with 95 ml of phosphate buffer saline (PBS). The filtrated solution was applied onto the immuno-affinity column (Alfa BG. 1003, VICAM). The column was rinsed twice with 10 ml of deionized water and the toxin was eluted from the column with 1.0 ml of acetonitrile-methanol mixture (3+2). The column was subsequently washed with 1ml of deionized water and the washing was combined with the acetonitrilemethanol elute. AFB1 in the acetonitrile-methanolwater mixture was determined by an HPLC method using a Lich rospher 100 PR-18 ECO Pack column (5µm, 25 x 4.6 mm i.d., Merek, Portugal), with postcolumn derivatization involving bromination with pyridinum hydrobroide perbromide (PBPB, Sigma P-3179, Quimica S.A., Spain) and fluorescence detection (Merck Hitachi, excitation and emission wavelengths were 360 nm and 420 nm, respectively). The mobile phase was water-acetonitrile-methanol solution (6/2/3) (v/v/v) and flow rates were 1.00 ml/min for mobile phase and 0.30 ml/min for the PBPB reagent (Martins et al., 2008).

c) Gene expression Analysis:1. Extraction of total RNA

Liver, brain and testis tissues of quail of all groups were used individually to extract total RNA using TRIzol® Reagent (cat#15596-026, Invitrogen, Germany). Total RNA of each tissue was treated individually with 1 U of RO1 RNAse-free DNAse (Invitrogen, Germany) to digest DNA residues, re-DEPC-treated in suspended water and photospectrometrically quantified at A₂₆₀. Purity of total RNA was assessed by the 260/280 nm ratio (between 1.8 and 2.1). Additionally, integrity was assured with ethidium bromide-stain analysis of 28S and 18S bands by formaldehyde-containing agarose gel electrophoresis. Aliquots were used immediately for reverse transcription (RT), otherwise stored at -80°C.

2. Synthesis of the cDNA using reverse transcription (RT) reaction

The complete $Poly(A)^+$ RNA isolated from quail tissues was reverse transcribed into cDNA in a total volume of 20 µl using RevertAidTM First Strand cDNA Synthesis Kit (MBI Fermentas, Germany). An

amount of total RNA (5µg) was used with a reaction mixture, termed as master mix (MM). The MM was consisted of 50 mM MgCl₂, 5x reverse transcription (RT) buffer (50 mM KCl; 10 mM Tris-HCl; pH 8.3), 10 mM of each dNTP, 50 uM oligo-dT primer, 20 U ribonuclease inhibitor (50 kDa recombinant enzyme to inhibit RNase activity) and 50 U M-MuLV reverse transcriptase. The mixture of each sample was centrifuged for 30 sec at 1000 g and transferred to the thermocycler (Biometra GmbH, Göttingen. Germany). The RT reaction was carried out at 25°C for 10 min, followed by 1 h at 42°C, and finished with a denaturation step at 99°C for 5 min (Khalil et al., 2008a,b). Afterwards the reaction tubes containing RT preparations were flash-cooled in an ice chamber until being used for DNA amplification through sqRT-PCR.

3. Semi Quantitative Real Time-Polymerase Chain Reaction (sqRT-PCR)

An iQ5-BIO-RAD Cycler (Cepheid. USA) was used to determine the quail cDNA copy number. PCR reactions were set up in 25 µL reaction mixtures containing 12.5 µL 1× SYBR® Premix Ex TaqTM (TaKaRa, Biotech. Co. Ltd.), 0.5 µL 0.2 µM sense primer, 0.5 µL 0.2 µM antisense primer, 6.5 µL distilled water, and 5 µL of cDNA template. The reaction program was allocated to 3 steps. First step was at 95.0°C for 3 min. Second step consisted of 40 cycles in which each cycle divided to 3 steps: (a) at 95.0°C for 15 sec; (b) at 55.0°C for 30 sec; and (c) at 72.0°C for 30 sec. The third step consisted of 71 cycles which started at 60.0°C and then increased about 0.5°C every 10 sec up to 95.0°C. At the end of each sqRT-PCR a melting curve analysis was performed at 95.0°C to check the quality of the used primers. Each experiment included a distilled water control.

The quantitative values of RT-PCR of Glyceraldehyde Phosphate dehydrogenase (GAPDH-F: 5'-GGT GAA AGT CGG AGT CCA-3', GAPDH-R: 5'-TTC TGT GTG GCT GTG ATG -3', (SQUITTI et al., 1999); N-cadherin (N-cadherin-F: 5'-GAT GTC AAT GAC AAT CCT CC-3', N-cadherin-R: 5'-CAT CCT AGT TGC GTC TTC AAA G -3', (Squitti et al., 1999); Neural cell adhesion molecule (NCAM-F: 5'-GCC TGA AAC CTG AGA CAA C-3', NCAM -R: 5'- CTT ACG AAC TGG CTG TGT TC -3', (Squitti et al., 1999); and Cytochrome P450 cholesterol side chain cleavage (P450scc-F: 5'- ACA GCA GTT CAT CGA CGC CG -3', P450scc-R: 5'-AAG GAG GCT GAA GAG GAT G -3'. (KANDA et al., 2000) genes were normalized on the bases of β-actin (β-actin-F: 5'- TGT GAT GGT GGG AAT GGG TCA G -3', B-actin-R: 5'- TTT GAT GTC

ACG CAC GAT TTC C -3', (Hwang *et al.*, 2009) expression.

The selected genes are responsible for different functions during cell differentiations. Where, GAPDH is a gene coding an enzyme that catalyzes the sixth step of glycolysis and thus serves to break down glucose for energy and carbon molecules. NCAD is a gene coding a protein that has been implicated as having a role in cluster of differentiations. Also, NCAM is a gene coding a hemophilic binding glycoprotein expressed on the surface of neurons, ganglia, skeletal muscle and natural killer cells. P450scc is a gene coding a mitochondrial enzyme associated with the conversion of cholesterol to pregnenolone.

At the end of each sqRT-PCR a melting curve analysis was performed at 95.0°C to check the quality of the used primers.

4. Calculation of Gene Expression

First the amplification efficiency (Ef) was calculated from the slope of the standard curve using the following formulae (BIO-RAD, 2006): Ef = $10^{-1/\text{slope}}$

Efficiency (%) = $(Ef - 1) \times 100$

The relative quantification of the target to the reference was determined by using the ΔC_T method if E for the target (GH, IGF-1) and the reference primers (β -Actin) are the same (Bio-Rad, 2006) Ratio (reference/target gene) = Ef_T^{C}(reference) - C_T^{(target)}

Statistical analysis:

Body weight (BW), body weight gain (BWG) and gene expression data were analyzed as a one-way analysis of variance using the General Linear Model, SAS software (SAS INSTITUTE, 2004). Weight data were reported as least square means (LSM) \pm standard errors (SEM). Gene expression data are expressed as means \pm SEM. Mean values were separated, when significance is present, using Duncan's Multiple Range Test (Duncan, 1955). Significance level was set at 5%.

3. Results

Effect of AFB₁ and yeast on growth performances:

Data presented in Table (1) showed the effect of dietary treatments on body weight (BW). Feeding AFB₁ alone suppressed the BW from the 3rd week (BW3) to week 7th week (BW7) compared to control. This deleterious effect of AFB₁ on BW was significant ($P \le 0.05$) in the 6th week and the 7th week. The addition of (SC) at levels of 0.5-2.5 gm/kg to AFB₁-containing diets had ameliorated the adverse effect on BW. However, it was only significant during the 6th and 7th week of age.

Feeding AFB₁ alone also suppressed the BWG (Table 2) from the first week onwards and increased progressively until the end of the experimental period compared to controls. This suppression in weight gain was significant ($P \le 0.05$) from the 6th to the 7th week of age and highly significant ($P \le 0.01$) from 2nd to the 7th week of age (overall). The addition of SC to AFB₁ -containing diets improved the adverse effect of AFB₁ on BWG. This improvement was significant ($P \le 0.05$) in group fed diet containing AFB₁ plus SC at 2.5 gm/kg diet level for the overall period.

Toxin analysis in some quail organs by using HPLC method:

As shown in Table (3), the concentrations of AFB_1 were higher in breast muscle (Figure 1[a-f]) and liver (Figure 2[a-f]) samples of quail fed diet containing AFB_1 than those found in samples of quail fed basal diet alone (control). The liver samples had the highest concentration of AFB_1 . On the other hand, the amount of AFB_1 were reduced in breast muscle and liver samples that were collected from quail fed diets containing AFB_1 plus SC compared to those observed in samples of quail fed diets containing AFB_1 alone. The concentrations of AFB_1 in breast muscle and liver samples of quail fed diets containing AFB_1 alone. The concentrations of AFB_1 in breast muscle and liver samples of Quail fed diets containing AFB_1 plus high levels of SC (2.5 gm/kg) had the lowest amount of AFB_1 followed by the group that was fed diet containing AFB_1 plus 2.0 gm SC/kg diet.

Gene expression analysis: Determination of the linear range of PCR amplification

The optimum values for the oligonucleotide primer concentrations were performed by using quail first strand cDNA as a template. The relationship between the CT value and the logarithm of the dilution factor of cDNA was evaluated under conditions that optimized the amplification of the target genes (GAPDH, N-cadherin, NCAM and P450scc). This evaluation was shown to be linear with a correlation coefficient > 0.99.

Gene expression of GAPDH, N-cadherin, NCAM and P450scc genes

The present results (Figures 3-5) revealed a significant ($p \le 0.01$) decrease of gene expression levels of GAPDH, N-cadherin and NCAM genes in quail fed diet containing AFB₁ compared with those of the control group.

In contrary, the expression levels of GAPDH, N- cadherin and NCAM genes in quail fed diet containing AFB_1 plus low levels of SC (0.5 gm or 1.0 gm SC/kg diet) were higher than those found in quail fed diet containing AFB_1 alone. However,

these differences were not statistically significant. On the other hand, the expression levels of GAPDH, Ncadherin and NCAM genes in the brain and liver samples collected from quail fed diet containing AFB_1 plus high levels of SC (2.0 gm or 2.5 gm SC/kg diet) were significantly (p \leq 0.01) higher than those observed in quail fed diet containing AFB_1 alone.

Table	(1):	Effect	of	different	levels	of	Sccharomyces	cerevisiae	on	body	weight	(BW)	of	Japanese	quail f	ed
diets containing aflatoxin B_1 from 14 to 49 days of age.																

	BW2	BW3	BW4	BW5	BW6	BW7
Treatments	LSM±SEM	LSM±SEM	LSM±SEM	LSM±SEM	LSM±SEM	LSM±SEM
BD (C)	49±2.3	102±3.7	161±4.5	207±5.5	241±7.2 ^a	268±10.3 ^a
BD + T	50±2.8	96±5.5	149±7.1	191±6.7	215±6.6 ^b	224±5.3 °
$BD + T + SC_1$	51±2.9	88±5.3	147±5.1	196±5.8	221 ± 6.8^{ab}	228±8.1 bc
$BD + T + SC_2$	48±2.7	100±5.2	154±8.5	193±7.8	222±9.8 ^{ab}	232±9.4 ^{bc}
$BD + T + SC_3$	50±1.4	96±4.7	155±6.5	202±8.9	225±10.4 ab	232±10.6 ^{bc}
$BD + T + SC_4$	48±2.4	97±4.4	157±4.1	208±4.9	238±6.4 ^{ab}	253±7.2 ^{ab}

a-c means, within age group, followed by different superscripts, differ significantly (P ≤ 0.05); BD (C) = Basal diet (control); T = AFB₁ (0.5mg/kg diet); SC₁ = 0.5 gm SC/kg diet; SC₂ = 1.0 gm SC /kg diet; SC₃ = 2.0 gm SC/kg diet; SC₄ = 2.5 gm SC /kg diet.

 Table (2): Effect of different levels of Sccharomyces cerevisiae on body weight gain (BWG) of Japanese quail fed diet containing aflatoxin B1 from 14 to 49 days of age.

Treatments	BWG2 LSM±SEM 2wks-3wks	BWG3 LSM±SEM 3wks-4wks	BWG4 LSM±SEM 4wks-5wks	BWG5 LSM±SEM 5wks-6wks	BWG6 LSM±SEM 6wks-7wks	BWG7 LSM±SEM 2wks-7wks
BD (C)	53±2.7 ^a	59±1.5	45±2.5 ^{ab}	34±5.3	26±6.0 ^a	218±10.3ª
BD + T	46±3.7 ^{ab}	53±3.0	43±3.0 ^{ab}	23±2.6	9±3.0 ^b	174±5.4 °
$BD + T + SC_1$	37±4.3 ^b	59±2.3	50±3.0 ^a	24±3.0	7±3.2 ^b	177±8.2 °
$BD + T + SC_2$	52±5.0 ^a	54±6.0	40±9.6 ^b	29±4.0	10±3.4 ^b	189 ± 7.6^{bc}
$BD + T + SC_3$	48 ± 4.0^{ab}	60±3.1	47±3.1 ^{ab}	24±3.7	6±2.6 ^b	183 ± 9.7 bc
$BD + T + SC_4$	48±2.5 ^{ab}	59±3.6	51 ± 2.7^{a}	31±2.5	15±2.7 ^b	203±6.8 ^{ab}

a-c means, within age group, followed by different superscripts, differ significantly (P \leq 0.05); BD (C) = Basal diet (control); T = AFB₁ (0.5mg/kg diet); SC₁ = 0.5 gm SC/kg diet; SC₂ = 1.0 gm SC /kg diet; SC₃ = 2.0 gm SC/kg diet; SC₄ = 2.5 gm SC /kg diet.

Table (3): Concentrations of AFB₁ in breast muscle and liver samples of quail fed different diets.

Quail Diets or treatments	Aflatoxin B₁ ppb μg/kg					
	Breast muscle	Liver				
BD (C)	0.43	0.07				
BD + T	4.37	8.64				
$BD + T + SC_1$	4.01	5.93				
$BD + T + SC_2$	2.19	2.74				
$BD + T + SC_3$	1.37	1.95				
$BD + T + SC_4$	0.86	0.94				

BD (C) = Basal diet (control); T = AFB₁ (0.5mg/kg diet); SC₁ = 0.5 gm SC/kg diet; SC₂ = 1.0 gm SC /kg diet; SC₃ = 2.0 gm SC/kg diet; SC₄ = 2.5 gm SC /kg diet.

Fig. (a). Concentration of AFB_1 (0.43/ppb) in control

Fig. (c). Concentration of AFB₁ (4.01 ppb) in quail fed diet containing AFB₁ plus 0.5 gm SC/kg.

Fig. (e). Concentration of AFB₁ (1.37 ppb) in quail fed diet containing AFB₁ plus 2.0 gm SC/kg.

Fig. (b). Concentration of AFB₁ (4.37 ppb) in quail fed diet containing AFB₁ (0.5 mg/kg)

Fig. (d). Concentration of AFB₁ (2.19 ppb) in quail fed diet containing AFB₁ plus 1.0 gm SC/kg.

Fig. (f). Concentration of AFB₁ (0.86 ppb) in quail fed diet containing AFB₁ plus 2.5 gm SC/kg.

Fig. (a). Concentration of AFB₁ (0.071 ppb) in quail control group

Fig. (c). Concentration of AFB₁ (5.93ppb) in quail fed diet containing AFB₁ plus 0.5 gm SC/kg.

Fig. (e). Concentration of AFB₁ (1.95 ppb) in quail fed diet containing AFB₁ plus 2.0 gm SC/kg.
 Fig. 2: Concentrations of AFB₁ as confirmed by HPLC method in quail liver.

Fig. (b). Concentration of AFB₁ (8.639 ppb) in quail fed diet containing AFB₁ (0.5 mg/kg)

Fig. (d). Concentration of AFB₁ (2.74 ppb) in quail fed diet containing AFB₁ plus 1.0 gm SC/kg.

Fig. (f). Concentration of AFB₁ (0.935 ppb) in quail fed diet containing AFB₁ plus 2.5 gm SC/kg.

Fig. 3: Semi-quantitative Real Time-PCR analysis of GAPDH-mRNAs in brain and liver tissues collected from male quail (n=10) fed standard diet containing AFB₁ alone or AFB₁ combined with different concentrations of SC. Means with different letters, within tissue, differ significantly ($p \le 0.05$).

Fig. 4: Semi-quantitative Real Time-PCR analysis of N-cadherin-mRNAs in brain and liver tissues collected from male quail (n=10) fed standard diet containing AFB₁ alone or AFB₁ combined with different concentrations of SC. Means with different letters, within tissue, differ significantly ($p \le 0.05$).

Fig. 5: Semi-quantitative Real Time-PCR analysis of NCAM-mRNAs in brain and liver tissues collected from male quail (n=10) fed standard diet containing AFB₁ alone or AFB₁ combined with different concentrations of SC. Means with different letters, within tissue, differ significantly ($p \le 0.05$).

Fig. 6: Semi-quantitative Real Time-PCR analysis of P450scc-mRNAs in testis and liver tissues collected from male quail (n=10) fed standard diet containing AFB₁ alone or AFB₁ combined with different concentrations of SC. Means with different letters, within tissue, differ significantly ($p \le 0.05$).

4. Discussion:

Regarding to P450scc gene, the present results (Figure 6) revealed that the expression level of this gene in testis and liver samples of quail fed diet containing AFB₁ was significantly ($p \le 0.05$) low compared to those of the control group.

The expression level of P450scc gene in quail fed diet containing AFB₁ plus low level of SC (0.5 gm or 1.0 gm SC/kg diet) were higher than those detected in quail fed diet containing AFB₁ alone. However, these increases were not statistically significant. On the other hand, the gene expression level of P450scc in quail fed diet containing AFB₁ plus high levels of SC (2.0 gm or 2.5 gm SC/kg diet) were significantly higher ($p \le 0.05$) compared with those found in quail fed diet containing AFB₁ alone.

In the present study, the quail consumed AFB₁ (0.5 mg/kg) containing diet showed poor body weight (BW) and body weight gain (BWG). These deleterious effects of AFB1 on BW were statistically significant at 6 weeks (P \leq 0.05) and 7 weeks (P \leq 0.01) of age compared to control. Also the suppression of BWG was statistically significant (P \leq 0.05) from 6 to 7 weeks of age and highly significant $(P \le 0.01)$ from 2 to 7 weeks of age (overall). These results agree with other research on experimental aflatoxicosis in quail (Parlat et al., 1999; Celik et al., 2001 and Denli et al., 2003); in broiler (Kubena et al., 1998 and Celik et al., 2001); and other poultry species (Kubena et al., 1991 and Stewart et al., 1998). These adverse effects of AFB1 on BW and BWG may be due to anorexia, listlessness, inhibition of protein synthesis and lipogenesis (Campbell et al., 1983; Oguz and Kurtoglu, 2000; Oguz et al., 2000a,b and Parlat et al., 2001). Moreover, Campbell et al. (1983) reported that the AF- contaminated feed decreased the activities of several enzymes, which are important to the digestion of carbohydrates. proteins, lipids and nucleic acid in broiler chicks. Also, Boden and Jensen (1985) stated that toxic effect induced by AF could have disrupted the activity of the digestive enzymes and the absorption of essential nutrients.

On the other hand, the present results showed that the addition of SC to AFB_1 -containing diet significantly improved the adverse effect of AFB_1 on BW and BWG in quail. These findings were similar to that reported in quail by Parlat *et al.* (2001). They found that the addition of SC (1.0 gm/kg) to the AFB_1 -containing diet, significantly elevated the adverse effects of AFB_1 (2.5 mg/kg diet) on BW and BWG in quail fed for 35 days. Our results were also supported by the study of Stanley *et al.* (1993) on broiler chicks, who observed significant amelioration of the adverse effects of AFB_1 (0.5 mg /kg) on performance in broilers fed for 28 days. Moreover, Abousadi *et al.* (2007) reported that the addition of SC (0.2%) to AFB_1 -containing diet significantly decreased the adverse effect of AFB_1 (125 ppb) on BW and BWG in broiler chicks fed for 21 days.

The role of SC on the detoxification were attributed to its ability to produce biological enzymes that interacts with the AF molecules (Stanley et al., 1993) and other growth promoting effects (Raju and Devegowda, 2000). It was also reported that yeast has been known to alter stress in animals by providing a source of vitamins, enzymes and growth protein for reducing stress, to enhance the biological value of nitrogen compounds along the digestive tract (Stanley et al., 1993). Moreover the additional benefits of SC which were observed in the present study may be due to stimulation of the immune response (Savage et al., 1996), alteration of intestinal microbial environment (Newman, 1994) and producing enzymes for gut micro flora to enhance the nutrients bioavailability (Stanley et al., 1993; Raju and Devegowda, 2000; Parlat et al., 2001 and Abousadi et al., 2007).

The mode of action of yeast or its constituents (antioxidant compounds) against mutagenic or toxic effect of AFB_1 in animal cells (*in vivo*) may be due to binding with the mutagens or inhibition of activation of enzymes of cytochrome system-mediated N-hydroxylation with consequently enhancement of liver and kidney functions and reduction of abnormalities of genetic materials (Wang *et al.*, 2004 and Devaraj *et al.*, 2008).

As known, the liver is considered the principal target organ for Aflatoxins (Heathcote and Hibbert, 1978 and Phillips et al., 1995). From the present results it was observed that the concentrations of AFB₁ were higher in liver samples than those found in breast muscle samples. These results are similar to those reported by Bintvihok et al. (2002) who found that the levels of AFB₁ and its metabolites, including acid-hydrolysable metabolites, were much higher (about 10-fold) in liver than those observed in muscle cells in all species of treated domestic fowls, with such toxin. Our findings were also supported by those results reported by Howard and Eaton (1990); Eaton and Groopman (1994); Cullen and Newberne (1994) and Smele and Curier (2001) who observed that the liver is considered the main organ in which the AFB_1 are metabolized by enzymes of cytochrome P450 group and converted to many metabolic product such aflatoxins Q₁, P₁ and M_1 and also Aflatoxin 8, 9 epoxide.

The present results showed that the concentrations of AFB_1 have been reduced in liver and breast muscle samples that were obtained from quail groups receiving AFB_1 +SC than those found in

the liver and breast muscle samples from quail receiving AFB₁ alone. As discussed above, the SC or its constituents (some of the carotenoids and vitamins) have the ability for detoxification of AFB₁ through interacting or binding with AFB₁ molecule (Stanley *et al.*, 1993 and Raju and Devegowda, 2000). Also, Gradelet *et al.* (1998) reported that carotenoids exert their protective effect through the deviation of AFB₁ metabolism towards detoxification pathways in rats. In quail, Denli *et al.* (2003) observed that the dietary vitamin A reduced the toxic effects of AFB₁ so yeast addition caused less toxicity in the liver and kidney than the AFB₁ group.

The present results revealed that the gene expression of neural cell adhesion molecule (GAPDH, N-cadherin- and NCAM) genes were down-regulated in the quail fed diet containing AFB₁. Such changes of gene expression of neural genes are characteristic due to the AFB1 according to Kreutzberg (1995). The present findings are in agreement with those reported by Ahmed and Singh (1984) in chickens and by Ibegwuonu (1983) and Llewellyna et al. (1988) in rats. Those authors found that the concentrations of RNA in the nervous tissues were depressed by AFB₁ treatment. The breakdown of gene expression of neural genes which was observed in the present study may be due to retrograde signals from the nervous terminal as a result of AFB1 treatment (Pershon et al., 1989; Pahl and Baeuerle, 1996 and O'Neill and Kaltschmidt, 1998).

The present results also showed that the expression level of P450scc gene was downregulated in quail fed diet containing AFB₁. These findings are supported by Macé et al. (1997) who found that treatment with AFB₁ induced DNA adduct formation and P^{53} mutations in CYP450 in human liver cell lines. Epidemiological studies by Bressac et al. (1991): Harris (1996) and Soini et al. (1996) showed a positive association between AFB₁ intake and a hot-spot guanine to thymine transversion mutation at the third base in the codon 249 of the P^{53} tumor suppressor gene. Moreover, some in vitro studies have provided indirect evidence for a mutative role of aflatoxin exposure in p^{53} mutagenesis by showing that AFB₁ causes primarily G-T transversions in bacteria (Foster et al., 1993) or human cells (Trottier et al., 1992 and Cariello et al., 1994). Aflatoxins have been found to be a potent mutagenic food component (Hall et al., 1988). This component is metabolized by the mixed function oxidase system to a number of hydroxylated metabolites and to aflatoxin 8, 9 epoxide which binds to DNA forming covalent adducts (Bushy and Wogan, 1984). The DNA adduct formation causes genomic instability including gene expression of animal genes (Soini *et al.*, 1996; Harris, 1996; Macé *et al.*, 1997; Huang and Kolodner, 2005 and Guardiola *et al.*, 2008).

On the other hand, the present results showed that SC was able to prevent the genetic alterations induced by AFB_1 in the quail tissues. Where, the mRNA concentrations were significantly increased in $AFB_1 + SC$ groups compared to AFB_1 group in quail brain, liver and testis. To our knowledge, there is no available information about the use of SC as protective agents on gene expression of animal genes against the toxic effect of mycotoxins. However, some studies reported that the veast cells contain high amounts of carotenoids, vitamins, minerals, and essential amino acids as well as the presence of B-D glucans on the cell wall of yeasts (Hussein et al., 1996; Vetvicka, 2001; Brown and Gordon, 2003). These constituents are considered as antioxidant agents, that interrupts the free radicalinitial chain reaction of oxidation or scavenge and disable free radicals (ROS) and reduced DNAoxidative damage (Vasankari et al., 1997; Sener et al., 2007 and Oliveria, et al., 2009) leading to genomic stability including gene expression of animal genes (Vetvicka, 2001; Brown and Gordon, 2003 and Van Breda et al., 2005).

Furthermore, in a previous study, Park *et al.* (2000) identified five peroxiredoxins in the SC that were named Tsa1 (CTPX1), Tas2, AhP1, Dot5 and Prx1, of which Tsa1 possesses the most potent ability to scavenge H_2 O₂. Also, Huang and Koshland, (2003) reported that the Tsa1 is the most potent protector of genomic stability and prevents a broad spectrum of mutations.

In Conclusion; *Sccharomyces cerevisiae* yeast has the ability to reduce the toxic effect of AFB_1 in quail. It was also apparent that the higher the inclusion rates of SC in the diet of quail (2.5 mg/kg) the more the effective it is. This was apparent from the BW, BWG data and the level of AFB_1 in the different quail tissues and the gene expression data.

Corresponding authors

Mariam Gergis Eshak, PhD^{*} Researcher of Animal Genetics Wagdy K. B. Khalil, PhD^{*} Associate Professor of Molecular Genetics ^{*}Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre (NRC) El.Tahrir Street, 12622 Dokki, Giza, EGYPT Fax: +202-33370931

References:

1. Abo-Norag, M., T. S. Edrington, L.F. Kubena, R.B. Harvey (1995): Influence of a hydrated sodium calcium aluminosilicate and virginiamycin on aflatoxicosis in broiler chicks. *Poultry Science* 74: 626-632.

- 2. Abousadi, A. M., E. Rowghani, M. Ebrahimi Honarmand (2007): The efficacy of various additives to reduce the toxicity of aflatoxin B1 in broiler chicks. *Iranian Journal of Veterinary Research* 8: 144-150.
- Ahmed, N., U. S. Singh (1984): Effect of aflatoxin B1 on brain serotonin and catecholamines in chickens. *Toxicology Letters* 21: 365-367.
- Bintvihok, A.S., k. D. I. Thiengnin, S. Kumagal (2002): Residues of aflatoxins in the liver, muscle and eggs of domestic fowls. *Journal of Veterinary Medical Science* 64: 1037-1039.
- 5. Bio-Rad Laboratories, Inc. (2006) Real-Time PCR applications guide. *Bulletin* 5279, pp.101.
- 6. Boden, S., L. Jensen (1985): The effect of marginal levels of calcium, fish meal, torulas yeast and alfalfa meal on feed intake, hepatic lipid accumulation, plasma estradiol and egg shell quality among laying hens. *Poultry Science* 64: 937-946.
- Bressac, B., M. Kew, J. Wands, M. Ozturk (1991): Selective G to T mutations of p53 gene in hepatocellular carcinoma from Southern Africa. *Nature* 350: 429-431.
- 8. Brown, G. D., S. Gordon (2003): Fungalbetaglucons and mammalian immunity. *Immunity* 19: 311-315.
- Bushy, W. F., G. N. Wogan (1984): Aflatoxins. In: Chemical carcinogens. Second edition, Volume 2, ACS Monograph 182, C.E. Searle, editor, American Chemical Society, *Washington DC*, Chapter 16, pp: 945-1136.
- Campbell, M. I., J. D. May, w. E. Huff, J. A. Doevr (1983): Evaluation of young broiler chicken during aflatoxicosis and ochratoxicosis. *Poultry Science* 62, 2138-2144.
- 11. Cariello, N. F., I. Cui, T. R. Skopek (1994): In vitro mutational spectrum of aflatoxin B1 in the human hypoxanthine guanine phosphoribosyl-transferase gene. *Cancer Research* 54: 4436-4441.
- Celik, K., M. Denli, M. Erturk, O. Ozturkcan, F. Doran (2001): Evaluation of dry yeast (Saccharomyces cerevisiae) compounds in the feed to reduce aflatoxin B1 (AFB1) residues and toxicity to Japanese quails (*Coturnix coturnix japonica*). Journal of Applied Animal Research 20:245-250.
- 13. Cullen, J.M., P.M. Newberne (1994): Acute hepatotoxicity of aflatoxins. In: Toxicology of Aflatoxins. J. D. Groopman, ed., pp: 43-70.

- Denli, M., K. Celik, F. Okan (2003): Effects of vitamin A supplementary in the feed to reduce toxic effects of aflatoxin B1 on Japanese quails (Coturnix cotrunix japonica). *International Journal of Poultry Science* 2: 147-177.
- Devaraj, S., S. Mathur, A. Basu, H. H. Aung, V. T. Vasu, S. Meyers, I. Jialal (2008): A doseresponse study on the effects of purified lycopene supplementation on biomarkers of oxidative stress. *Journal of the American College of Nutrition* 27: 267-273.
- 16. Duncan, D. B. (1955): Multiple range and multiple F tests. *Biometrics* 11: 1-42.
- Eaton, D.L., J. D. Groopman (1994): The Toxicology of the aflatoxins. In: Human Health, Veterinary, and Agricultural Significance. Academic Press, *London, UK.*, pp: 49-87.
- El-Nezami, H., H. Mykkänen, P. Kankaanpä, S. Salminen, J. Ahokas, (2000): Ability of lactobacillus and propionobacterium strains to remove aflatoxin B1 from chicken duodenum. *Journal of Food Protection* 63: 549-552.
- Foster, P.L., E. Eisenstadt, J. H. Miller (1993): Base substitution mutations induced by metabolically activated aflatoxin B1 *in vitro*. *Proceedings of the National Academy of Sciences* 80: 2695-2698.
- Galvano, F., A. Piva, A. Ritieni, G. Galvano (2001): Dietary strategies to counteract the effects of mycotoxins: a review. *Journal of Food Protection* 64: 120-131.
- Gowda, N. K. S., V. Malathi, R. V. Suganthi (2004): Screening for aflatoxin and the effect of moisture, duration of storage and form of feed on fungal growth and toxin production in livestock feeds. *Animal Nutrition* and *Feed Technology* 3: 45-51.
- Gradelet, S., A. M. Le Bon, R. Berges, M. Suschetet, P. Astorg (1998); Dietary carotenoids inhibit aflatoxin B1 induced liver preneoplastic foci and DNA damage in the rat: role of the modulation of aflatoxin B1 metabolism. *Carcinogenesis* 19: 403-411.
- 23. Guardiola, F., B. Ricard, C. Rafel, T. Alba, A. Tric (2008): Determination of hydroperoxides in food sand biological samples by the ferrous oxidation-xylenol orange method: a review of the factors that influence the method's performance. *Analytical Biochemistry* 377: 1-15.
- 24. Hall, J.C., S. C. Jori, J. Arrowman (1988): Food associated intoxicants. Nutrition & Food. *Science*, 12: 1-43.
- 25. Harris, C.C. (1996): The 1995 Walter Hubert lecture-molecular epidemiology of human

cancer: insights from the mutational analysis of the p53 tumor-suppressor gene. *British Journal* of Cancer, 73: 261-269.

- Heathcote, J. C., J. R. Hibert (1978): Pathological effects. In: Aflatoxins: Chemical and Biological Aspects. Elsevier Scientific Publishing Company, *New York*, pp: 83-111.
- Howard, S. R., d. l. Eaton (1990): Species susceptibility to aflatoxin B1 carcinogenesis. *Cancer Research* 50: 615-620.
- 28. Huang, D., D. Koshland (2003): Chromosome integrity in Saccharomyces cerevisiae: the interplay of DNA replication initiation factors, elongation factors, and origins. *Genes & Development* 17: 1741-1754.
- 29. Huang, M. E., R. D. Kolodner, (2005): A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. *Molecular Cell* 17: 709-720.
- Hussein, A. S., A. H. Cantor, A. J. Peascatore, T. H. Johnson (1996): Effect of dietary protein and energy levels on pullet development. Department of Animal Sciences, University of Kentucky, Lexington, *Kentucky*, pp: 40215-40546.
- Hwang, H. S., K. J. Han, Y. H. Ryu, E. J. Yang, Y. S. Kim, S. Y. Jeong, Y. S. Lee, M. S. Lee, S. T. Koo, S. M. Choi (2009). Protective effects of electroacupuncture on acetylsalicylic acidinduced acute gastritis in rats. *World J Gastroenterol* 15: 973-977.
- 32. Ibegwuonu, F.I. (1983): The neurotoxicity of aflatoxin B1 in the rat. *Toxicology* 28: 247-259.
- 33. Kanda, I., Y. Akazome, O. Ogasawara, T. Mori (2000): Expression of cytochrome P450 cholesterol side chain cleavage and 3betahydroxysteroid dehydrogenase during embryogenesis in chicken adrenal glands and gonads. *General and Comparative Endocrinology* 118: 96-104.
- 34. Khalil, W. K. B., T. Stadtlander, G. Francis, K. Becker, U. Focken (2008a): Effect of feed supplementation with different saponin fractions from Trigonella foenumgraecum on growth and expression of genes encoding GH and IGF-1 in carp, *Cyprinus carpio. Proceedings of the Society of Nutrition Physiology*, 17: 32.
- 35. Khalil, W. K. B., T. Stadtlander, G. Francis, U. Focken, K. Becker, B. Levavi-Sivan, Z. Kerem, H. Dweik, M. Qutob, S. Abu-Lafi (2008b): Saponin fractions from *Trigonella foenum-graecum* in the diet affect growth and expression of GH and IGF-1 encoding genes in tilapia (*Oreochromis niloticus*). Comparative

Biochemistry and Physiology Abstracts/ Part A 151: 512–513.

- Kreutzberg G. W. (1995): Reaction of neuronal cell body to axonal damage. In: The axon. S. G. Waxman, J. D. Kocsis and P. K. Stys (eds.), Oxford University Press, *New York*, pp: 335– 374.
- Kubena, L. F., R. B. Harvery, R. H. Balitey, S. A. Buckley, G. E. Rottinghaus (1998): Effects of a hydrated sodium calcium aluminosilicate (T-BindTM) on mycotoxicosis in young broiler chikens. *Poultry Science* 77: 1502-1509.
- Kubena, L. F., R. B. Harvey, A. G. Yersin, M. H. Ellisalde, D. A. Witzel, L. E. Giroir, T. D. Phillips, H. D., Petersen (1991): Effect of hydrated sodium calcium aluminosilicate on growing turkey poults during aflatoxicosis. *Poultry Science* 70: 1823-1830.
- Leeson, S., G. Dizy, J. D. Summers (1995): Aflatoxins. In: Poultry metabolic disorders and mycotoxins. S. Leeson; G. Diaz and J.D. Summers (Eds.). Guelph, Ontario, University Books, pp: 248-279.
- 40. Llewellyna, G.C., W. V. Dashekb, T. D. Kimbroughc, C. E. O'Reard, L. B. Weekleye (1988): Aflatoxin B1 affects feed consumption in male rats through an action on the central nervous system. *International Biodeterioration* 24: 417-425.
- Macé, K., F. Aguilar, J. S. Wang, P. Vautavers, M. Gómez-Lechón, F. J. Gonzalez, J. Croopman, C. C. Harris, M. A. Pfeifer (1997): Aflatoxin B1-induced DNA adduct formation and P53 mutations in CYP450-expressing human liver cell lines. *Carcinogenesis* 18: 1291-1297.
- 42. Martins, M.H., I. Almeida, M. Marques, F. Bernardo (2008): Interaction of wild Strains of Aspergillua with Aspergillus parasites ATCC 15517 and aflatoxin production. *International Journal of Molecular Sciences* 9: 394-400.
- Miazzo, R., C. A. Rosa, E. C. DeQueiroz Carvalho, C. Magnoli, S. M. Chiaccnieva, C. Palocio, M. Saenz, A. Kikot, E. Basaldella, A. Dalcero (2000): Efficacy of synthetic zeolite to reduce the toxicity of aflatoxin in broiler chicks. *Poultry Science* 79: 1-6.
- 44. NRC. (1994): Nutrient Requirements of Poultry. 9th rev. National Academy Press, Washington, DC.
- 45. Newman, Κ. E. (1994): Mannan oligosaccharide, natural polymers with significant impact on the gastrointestinal microflora and immune system. In: Biotechnology in the feed industry. T.P. Lyons

and K.A. Jaques (eds.). *Kentucky*: Alltech Inc. pp: 167-174.

- O'Neill, L. A. J., C. Kaltschmidt (1998): NF-KB: a crucial transcription factor for glial and neuronal cell function. *Trends in Neurosciences* 20: 252–258.
- Oguz, H., V. Kurtoglu (2000): Effect of clinoptiloite on fattening performance of broiler chickens during experimental aflatoxicosis. *British Poultry Science* 41: 512-517.
- 48. Oguz, H., T. Kecel, Y. O. Birdane, F. Onder, V. Kurtoglu (2000a): Effect of clinoptilolite on biochemical serum and hematological characters of broiler chickens during aflatoxicosis. experimental Research in Veterinary Science 69: 89-93.
- 49. Oguz, H., V. Kurtoglu, B. Coskun (2000b). Preventive efficacy of clinoptilolite in broilers during chronic aflatoxin (50 and 100 ppb) exposure. *Research in Veterinary Science* 69:197-201.
- Oliveria, C. A. F., J. F. Rosmaninho, P. butkeraitis, B. Corréa, T. A. Reis, J. L. Guerra, R. Albuquerque, M. E. G. Moro (2002): Effect of low levels of dietary aflatoxin B1 on laying Japanese quail. *Poultry Science* 81: 976-980.
- 51. Oliveria, S.A., K. Okoshi, A. P. Lima– Leopoldo, A. S. Leopoldo, D. H. Campos, P. F. Martinez, M. P. Okoshi, C. R. Padovani, M. D. Pai-Silva, A. C. Cicogna (2009): Nutritional and cardiovascular profiles of normotensive and hypertensive rats kept on a high fat diet. *Arquivos Brasileiros de Cardiologia* 93: 526-533.
- Pahl, L., P. A. Baeuerle (1996); Control of gene expression by proteolysis. *Current Opinion in Cell Biology* 8: 340–347.
- Park, S. G., M. K. Cha, W. Jeong, I. H. Kim, (2000); Distinct Physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. *Journal of Biological Chemistry* 275: 5723-5732.
- 54. Parlat, S. S., M. H. Ozcan, H. Oguz (2001): Biological Suppression of aflatoxicosis in Japanese quail (*Coturnix coturnix japonica*) by dietary addition of yeast (Saccharomyces cerevisiae). *Research in Veterinary Science* 71: 207-211.
- 55. Pershon, E., G. E. Pollemberg, M. Schachner (1989): Immunoelectron-microscopic localization of the 180 KD component of the neural cell adhesion molecule NCAM in postsynaptic membranes. *Journal of Comparative Neurology* 288: 92–100.
- 56. Phillips, T. D., A. B. Sarr, P. G. Grant (1995): Selective chemisorption and detoxification of

Aflatoxins by phyllosilicate clay. *Natural Toxins* 3: 204-213.

- 57. Raju, M. V., G. Devegowda (2000); Influence of esterified glucomannan on performance and organ morphology, serum biochemistry and hematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin). *British Poultry Science* 41: 640-650.
- 58. SAS Institute Inc. (2004): SAS/STAT®9.1 User's Guide, Cary, NC: SAS Institute Inc.
- 59. Savage, T. F., P. F. Cotter, E. I. Zakrzewska (1996): The effect of feeding mannan oligosaccharide on immunoglobulins, plasma IgG and bile IgA of Wordstad MW male turkeys. *Poultry Science* 75: 53-64.
- 60. Sener, G., H. Aksoy, O. Sehili, M. Yuksel, C. Aral, N. Gedik, S. Cetrinel, B. C. Yegen (2007): Erdosteine prevents colonic inflammation through its antioxidant and free radical scavenging activities. *Digestive Diseases and Sciences* 52: 2122-2132.
- 61. Sinsek, N., L. Ergun, E. Rgun, B. Alabay, D. Essiz (2007): The effects of experimental aflatoxicosis on the exocrine pancreas in quails (*Coturnix coturnix japonica*). Archive of Toxicology 81: 583-588.
- 62. Smele, M. E., S. S. Curier (2001): The chemistry and biology of aflatoxin B1. *Carcinogenesis* 22: 535-545.
- 63. Soares, L. M. V., D. B. Rodrigues–Amaya (1989): Survey of alfatoxins, ochratoxins A Zearalenone and sterigmatocystin in some Brazilian foods by using multitoxin thin layer chromatographic method. *Journal of the Association of Official Analytical Chemists* 72: 22-26.
- 64. Soini, Y., S. C. Chia, W. P. Bennett (1996): An aflatoxin-associated mutational hotspot at condon 249 in the p53 tumor suppressor gene occurs in hepatocellular carcinomas from Mexico. *Carcinogenesis* 17:1007-1012.
- 65. Squitti, R., M. E. De Stefano, D. Edgar, G. Toschi (1999): Effects of axotomy on the expression and ultra structural localization of N-cadherin and neural cell adhesion molecule in the quail ciliary ganglion: An in vivo model of neuroplasticity. *Neuroscience* 91: 707-722.
- 66. Stanley, V. G., R. Ojo, S. Moldesenbet, D. H. Hutchinson, L. P. Kubena (1993); The use of Saccharomyces cerevisiae to suppress the effects of aflatoxicosis in broiler chicks. *Poultry Science* 12, 1867-1872.
- Stewart, S., X. Kal-Lu, W. F. Huff, L. F. Kubena, R. B. Harvey, H. A. Dunsford (1998): Aflatoxin exposure produces serum

alphafoetoprotein elevations and marked oval cell proliferation in young male Pekin duckling. Pathology 30: 34-39.

- Tovar-Ramirez, D., D. Mazurais, J. F. Gatesoupe, P. Quazuguel, C. L. Cahu, J. L. Zambonino-Infante (2010): Dietary probiotic live yeast modulates antioxidant enzyme activities and gene expression of sea bass (*Dicentrachus labrax*) larvae. *Aquaculture* 300: 142-147.
- 69. Trottier, Y., W. I. Walthe, A. Anderson (1992): Kinds of mutations induced by aflatoxing B1 in a shuttle vector replicating in human cells transiently expressing cytochrome P4501 A2 cDNA. *Mol. Carcinogenesis* 6: 140-147.
- Van Breda, S.G., E. Van Agen, S. Van Sanden, T. Burzykowski, J. C. Kleinjans, J. H. Van Delft (2005): Vegetables affect the expression of genes involved in carcinogenic and anticarcinogenic processes in the lungs of female C57B1/6 mice. *Journal of Nutrition* 135: 2546-2552.
- Vasankari, T. J., U. M. Kujala, T. M. Vasankari, T. Vuorimaa, M. Ahotupa (1997): Increased serum and low-density-lipoprotein antioxidant potential after antioxidant supplementation in endurance athletes. *American Journal of Clinical Nutrition* 65: 1052-1056.
- 72. Vetvicka, V., (2001): B-glucans as immunomodulators. *JANA* 3: 31-34.
- 73. Wang, S., E. A. Konorev, S. Kotamraju, J. Joseph, S. Kalivendi, B. Kalyanaraman (2004): Doxorubicin induce apotosis in normal and tumor cells via distinctly different mechanisms. Intermediacy of H2O2 and p53- dependent pathways. *Journal of Biological Chemistry* 279: 25535-25543.

10/2/2010