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Abstract: This work was carried out for the biosynthesis of antifungal substance that demonstrated inhibitory 
effects against pathogenic fungi from Streptomyces albidoflavus, 143. The active metabolite was extracted using 
ethyl acetate (1:1, v/v) at pH 7.0. The separation of the active ingredient of the antifungal agent and its purification 
was performed using both thin layer chromatography (TLC) and column chromatography (CC) techniques. The 
physico-chemical characteristics of the purified antibiotic viz. color, melting point, solubility, elemental analysis, 
spectroscopic characteristics and chemical reactions have been investigated. This analysis indicates a suggested 
imperical formula of C22H36O6. The minimum inhibition concentrations "MICs" of the purified antifungal agent 
were also determined. The purified antifungal agent was suggestive of being belonging to Macrodiode antibiotic 
produced by Streptomyces albidoflavus, 143. 
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1. Introduction 

Many species of actinomycetes, particularly 
those belonging to the genus Streptomyces, are well 
known as antifungal biocontrol agents that inhibit 
several plant pathogenic fungi (Joo, 2005). The 
antagonistic activity of Streptomyces to fungal 
pathogens is usually related to the production of 
antifungal compounds (Fguira et al., 2005) and 
extracellular hydrolytic enzymes (Taechowisan et al., 
2005). Chitinase and β-1,3-glucanase are considered 
to be important hydrolytic enzymes in the lysis of 
fungal cell walls, as for example, cell walls of 
Fusarium oxysporum, Sclerotinia minor, and S. 
rolfsii (Mukherjee and Sen, 2006) 

The macrotetrolides are a family of cyclic 
polyethers produced by a number of Streptomyces 
species (Birch and Robinson, 1995 and Fleming and 
Ghosh, 1996). Nonactin (NON), the smallest 
homolog and a symmetric member of the family, was 
first isolated in 1955 (Corbaz et al., 1955). Its 
structure was initially deduced from spectroscopic 
analysis and was later confirmed by X-ray 
crystallography (Dobler, 1972, Kilbourn et al., 1967), 
revealing that the intriguing molecular topology of 
NON consists of the (+)(-)(+)(-)-ester linkage of the 
enantiomeric nonactic acid (NA) building blocks. 
NA-type building blocks have also been identified in 
several macrodiolides (Jois et al., 1986), including 
the pamamycins (Natsume et al., 1991). The 
macrotetrolides exert a broad spectrum of biological 
activities (Zizka, 1998), ranging from antifungal, 

antitumor (Borrel et al., 1994), antiprotozoan, 
antiparasitic, and insecticidal activities to 
immunosuppressive activities (Callewaert et al., 
1988). In fact, comparative studies on the 
immunosuppressive activities of tetranactin and 

cyclosporin, the latter being the most widely used 
immunosuppressant agent, showed that these two 
compounds were approximately equally effective and 
that tetranactin has the advantage of low toxicity 

(Teunissen et al., 1992). The biological activities of 
the macrotetrolides are generally traced to their 
ionophoric properties (Marrone  and Merz, 1992.), 
and the potencies of these activities appear to parallel 
the size of the alkyl substituent’s of the 
macrotetrolides: tetranactin is often the most potent 
member of the family, while NON is generally 

inactive. The biosynthesis of NON has been 
extensively studied by in vivo feeding experiments 
with 13C-, 2H-, and 18O-labeled precursors and 
biosynthetic intermediates (Ashworth et al., 1989) 
and by isolation of both enantiomers of NA and the 
dimeric NA (Fleck et al., 1996). These results 
established unambiguously the polyketide origin of 
NON, the assembly of which from one molecule each 
of propionate and succinate and two molecules of 
acetate must have invoked (i) the rare use of succinate 
as an intact four-carbon fragment (C-3 to C-6) and (ii) 
the derivation of a three-carbon unit (C-7 to C-9) 
from two molecules of acetate (one of which is 
activated in the form of malonate). Feeding 
experiments with 13C- and 18O-doubly-labeled 
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precursors indicated that the C-3-O bond is formed 

during closure of the tetrahydrofuran ring, 
presumably by an intramolecular Michael addition of 
the 6-hydroxy group onto the enone moiety of 2-
methyl-6,8-dihydroxynon-2E-enoic acid (NEA) 
(Ashworth and Robinson, 1988). The involvement of 
the latter step in NON biosynthesis was further 

substantiated by the efficient and enantiospecific 
incorporation of both (6R,8R)-NEA into NON 
(Spavold and Robinson, 1988) and by the drastic 
reduction of NON production upon the addition of an 
NEA analog into the fermentation medium, which 
presumably acts as a suicide inhibitor for this 
enzymatic step (Priestley and Earle, 1997).  

The Macrodiode has molecular weight 396 
and empirical formula C22H36O6, and (U.V) strong 
end absorption spectrum (Jois and Gurusiddaiah, 
1986). 

In the present study, the productio of the 
bioactive substances that demonstrated inhibitory 
affects against microbial pathogenic, from 
Streptomyces albidoflavus, 143 were reported, along 
with some physico-chemical properties of secondary 
metabolites with high biological activities. 
 
2. Material and Methods 
2.1. Test organisms 
2.1.1. Unicellular fungi  

Saccharomyces cerevisiae, ATCC 9763, 
Candida albicans IMRU 3669. 
 
2.1.2.-Filamentous fungi 

Aspergillus niger,  IMI 31276.; Aspergillus 
flavus, IMI 111023, Aspergillus fumigatous, ATCC 
16424; Aspergillus terreus; Fusarium solani; 
Fusarium oxysporum, Fusarium moniliform, 
Alternaria alternata, Botrytis cinerea, Penicillium 
chrysogenum and Rhizoctonia solani. 
 
2.2. Fermentation 

A loopful of the, Streptomyces albidoflavus, 
143 from the 5-day culture age was inoculated into 
250 ml Erlenmeyer flasks containing 75 ml of liquid 
starch nitrate medium (seven flasks). The flasks were 
incubated on a rotary shaker (200 rpm) at 30 0C for 5 
days.  

Twenty-liter total volume was filtered 
through Whatman No.1 filter paper, followed by 
centrifugation at 5000 r.p.m for 20 minutes. The clear 
filtrates were tested for their activities against the test 
organisms (Sathi etal., 2001). 

 
2.3. Extraction  

The clear filtrate was adjusted at different 
pH values (4 to 9) and extraction process was carried 
out using different solvents separately at the level of 

1:1 (v/v). The organic phase was concentrated to 
dryness under vacuum using a rotary evaporator (Atta, 
2010). 

 
2.4. Precipitation 

The precipitation process of the crude 
compound dissolved in the least amount of the 
solvent carried out using petroleum ether (b.p 60-80 
°C) followed by centrifugation at 5000 r.p.m for 15 
min. The precipitate was tested for its antifungal 
activities (Atta et al., 2009). 
 
2.5. Separation 

Separation of the antifungal agent(s) into its 
individual components was conducted by thin layer 
chromatography using chloroform and methanol 
(24:1, v/v) as a solvent system (Atta et al., 2009). 
 
2.6. Purification 

The purification of the antimicrobial agent(s) 
was carried out using silica gel column (2 X 25) 
chromatography. Chloroform and Methanol 9:1 (v/v), 
was used as an eluting solvent. The column was left 
for overnight until the silica gel (Prolabo) was 
completely settled. One-ml crude precipitate to be 
fractionated was added on the silica gel column 
surface and the extract was adsorbed on top of silica 
gel. Fifty fractions were collected (each of 5 ml) and 
tested for their antimicrobial activities (Atta et al., 
2009). 
 
2.7. Physico-chemical properties of the antifungal 

agent 
2.7.1. Elemental analysis 

The elemental analysis C, H, O, N, and S 
was carried out at the micro analytical center, Cairo 
University, Egypt. 
 
2.7.2. Spectroscopic analysis  

The IR, UV, Mass spectrum, and NMR 
spectrum were determined at the micro analytical 
center of Cairo University, Egypt. 
 
2.7.3. Reaction of the antifungal agent with certain 

chemical test 
For this purpose, the following reactions 

were carried out: Molish’s, Fehling, Sakaguchi, 
Ninhydrin, Ehrlish, Nitroprusside, Ferric chloride, 
and Mayer reactions (Atta et al., 2011). 

 
2.7.4. Biological activity 

The minimum inhibitory concentration 
(MIC) could be determined by the cup assay method 
(Kavanagh, 1972). 
 
2.7.5. Characterization of the antifungal agent 
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The antifungal agent produced by 
Streptomyces albidoflavus, 143 was identified 
according to the recommended international 
references of (Umezawa, 1977; Berdy, 1974; Berdy, 
1980a b & c; Jois and Gurusiddaiah, 1986). 

 
3. Results 
 3.1. Fermentation and Separation of the 
antifungal agent 

The fermentation process was carried out for 
three days at 30°C using liquid starch nitrate medium 
as production medium. Filtration was conducted 
followed by centrifugation at 5000 r.p.m. for 15 
minutes. The clear filtrates containing the active 
metabolite (20 liters), was adjusted to pH 7.0 then the 
extraction process was carried out using Ethyl acetate 
at the level of 1:1 (v/v). The organic phase was 
collected, and evaporated under reduced pressure 
using rotary evaporator. The residual material was 
dissolved in the least amount of DMSO and filtered. 
The filtrates were test for their antifungal activities. 
The antifungal agent was precipitated by petroleum 
ether (b.p. 60-80°C) and centrifuged at 5000 r.p.m for 
15 minute where a yellowish brown oil precipitate 
could be obtained. Separation of the antifungal 
agent(s) into individual components was carried out 
by thin-layer chromatography using a solvent system 
composed of chloroform and methanol (24:1, v/v). 
Among three bands developed, only one band at Rf 
0.9 showed antifungal activity. The purification 
process through column chromatography packed with 
silica gel indicated that the most active fractions 
against the tested organisms ranged between 20 to 31 
Fig. (1). 
 
3.2. Physicochemical characteristics of the 

antifungal agent 
The purified antifungal agent produces 

characteristic odour, their melting point is 180°C.  
The compound is freely soluble in chloroform, ethyl 
acetate, n-butanol, acetone, ethyl alcohol, methanol 
and 10 % isopropyl alcohol, but insoluble in water, 
petroleum ether, hexane and benzene. 

 
3.3. Elemental analysis 

The elemental analytical data of the 
antifungal agent(s) revealed the following: C=66.17; 
H=9.70; N= 0.0, O = 25.3 and S=0.0. This analysis 
indicates a suggested imperical formula of C22H36O6. 
 
3.4. Spectroscopic characteristics 

The infrared (IR) spectrum of the antifungal 
agent showed characteristic band corresponding to 17 
peaks, 810.21, 1060.19, 1201.17, 1268.12, 1331.21, 
1426.10, 1512.10, 1604.08, 1715.24 (lactone), 
1998.20, 2880.21, 2940.05 (C-H stretching), 2320.12, 

3278.23, 3601.11, 3624.07 and 3788.13 (Fig.2).The 
ultraviolet (UV) absorption spectrum of the 
antifungal agent recorded a maximum absorption 
peak region at 223.30, 260.7 and 271.58 (Fig. 3). The 
Mass spectrum revealed that the molecular weight is 
396 (Fig. 4). The NMR-Spectrum exhibited the 
multiple at δ 5.0 to 4.85 was due to the methine 
proton-bearing ester bonded oxygen (R-CH-O-COR)., 
the doublet at δ 1.24 was due to the methylene group 
of homononactic acid moieties attached to a carbon-
bearing ester-bonded oxygen (R-CH2-CHOCOR). 
Multiplets at δ 4.1 to 3.95 and 3.95 to 3.75 are 
characteristics of tetrahydrofuran methine protons (-
CH-O-CH-). Peaks at δ 2.1 to 1.7 were assigned to 
methylene protons of the tetrahydrofuran moiety (-
CH2-CH2-) (Fig.5). 
 
3.5. Biochemical reaction of the antimicrobial 

agent 
The reactions revealed the detection of 

certain groups in the investigated agent. The 
antifungal agent exhibited positive results with 
ninhydrin, ferric chloride and Mayer tests and 
negative results with nitroprusside, Molish’s, Fehling 
Sakaguchi, and Ehrlish reactions (Table 1). 

 
3.6. Biological activities of the antifungal agent  
             Data of the antifungal agent spectrum 
indicated that the agent is active against unicellular 
and filamentous fungi (Table 2). The MIC of 
antifungal antibiotic was determined and the results 
showed that the minimum inhibitory concentration 
(MIC) of the compound against unicellular fungi 
Saccharomyces cervisiae ATCC 9763 (31.25 µg/ ml) 
and Candida albicans, IMRU 3669 (25.25 µg/ ml) 
and maximum inhibitory activity was observed 
against filamentous fungi Aspergillus niger IMI 
31276 (46.9 µg/ ml), Aspergillus flavus (46.9), 
Botrytis fabae (46.9 µg/ ml), Fusarium oxysporum 
(52.7 µg/ ml), Rhizoctonia solani (52.7 µg/ ml), 
Alternaria alternate (62.5 µg/ ml), Aspergillus 
fumigatus ATCC 16424 (62.5 µg/ ml), and 
Penicillium chrysogenium (62.5 µg/ ml). 
 
3.7. Identification of the antifungal agent 

 On the basis of the recommended keys for 
the identification of antibiotics and in view of the 
comparative study of the recorded properties of the 
antifungal agent, it could be stated that the antifungal 
agent is suggestive of being belonging to Macrodiode 
antibiotic (Table 3). 
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Table 1. Summarizes the response of the antifungal agent to certain biochemical reactions. 

Chemical test Result Remark 
Molish’s reaction - Absence of sugar moiety 
Fehling test - Absence of free aldehyde or keto sugar 
Ninhydrin test + Present of free-NH2 group 
Sakaguchi reaction - Arginin is Absence 
Nitroprusside reaction - Absence of Sulfur 
Ferric chloride reaction + Absent of Di-ketons group 
Ehrlish rection - Absence of indolic acid 
Mayer reaction + Presence of nitro group 

 
 

Table 2. Biological activities (MIC) of the antifungal agent by paper method assay. 

Test organisms MIC (µg/ml) concentration 

1-Unicellular fungi:  

Candida albicans,  IMRU 3669 25.25 
Saccharomyces cervisiae, ATCC 9763 31.25 

2-Filamentous fungi:  
Aspergillus niger, IMI 31276 46.9 
Aspergillus fumigatus, ATCC 16424 62.5 
Aspergillus flavus, IMI 111023 46.9 
Fusarium oxysporum 52.7 
Rhizoctonia solani 52.7 

   Alternaria alternata 62.5 

Botrytis fabae 46.9 
Penicillium chrysogenium  62.5 

 
 
 

Table 3. A comparative study of the characteristic properties of the antifungal agent in relation to reference 
antifungal Macrodiode 

 

Characteristic Purified antibiotic Antifungal Macrodiode 

1- Melting point 180°C ND 
2- Molecular weight 396 396 
3-   Chemical analysis:   

C 66.17 66.17 
H 9.70 9.73 

N 0.0 0.0 
O 25.3 25.0 
S 0.0 0.0 

4- Ultra violet 240 240 
5- Formula C22H36O6 C22H36O6 
6- Active against Unicellular and filamentous fungi Unicellular and filamentous fungi 

   ND=No data 
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Figure 1. Antifungal activity of fractions obtained using silica gel column chromatography technique for antifungal 

agent produced by Streptomyces albidoflavus, 143. 
 
 

 
Figure 2. I.R spectrum of antifungal agent produced by Streptomyces albidoflavus, 143. 
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Figure 3. Ultraviolet absorbance of antifungal agent produced by Streptomyces albidoflavus, 143. 

 
 

 
Figure 4. Mass-Spectrum of antifungal agent produced by Streptomyces albidoflavus, 143. 
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Figure 5. NMR-Spectrum of antifungal agent produced by Streptomyces albidoflavus, 143. 

 
 
 
4. Discussions  

The active metabolites were extracted by 
ethyl acetate at pH 7.0. Similar results were obtained 
by (Criswell et al., 2006; Sekiguchi et al., 2007 and 
Atta et al., 2011). The organic phase was collected 
and evaporated under reduced pressure using rotary 
evaporator. The extract was concentrated and treated 
with petroleum ether (b.p. 60-80°C) for precipitation 
process, where only one active fraction was obtained 
in the form of yellowish brown oil. The purification 
process through a column chromatography packed 
with silica gel and an eluting solvents composed of 
chloroform and methanol (9:1, v/v), indicated that 
fractions activities was recorded from fraction Nos. 
20 to 31. Many workers used a column 
chromatography packed with silica gel. Similar 
results were obtained by (Jois and Gurusiddaiah, 
1986; Hitchens and Kell, 2003; El-Naggar, 2007 and 
Atta et al., 2009). The physico-chemical 
characteristics of the purified antibiotic revealed that, 
their melting point is 180°C.  The compound is freely 
soluble in chloroform, ethyl acetate, n-butanol, 
acetone, ethyl alcohol, methanol and 10 % isopropyl 
alcohol, but insoluble in water, petroleum ether, 

hexane and benzene. Similar results were recorded by 
(Yanai, 2004; Yoram et al., 2006 and Wenli et al., 
2008). A study of the elemental analysis of the 
antifungal agent C=66.17; H=9.70; N= 0.0, O = 25.3 
and S=0.0 lead to an imperical formula of C22H36O6. 
The spectroscopic characteristics of the antifungal 
agent under study revealed the presence of a 
maximum absorption peak in UV. at 223.30, 260.7 
and 271.58 nm, infra-red absorption spectrum 
represented by 17 peaks, 810.21, 1060.19, 1201.17, 
1268.12, 1331.21, 1426.10, 1512.10, 1604.08, 
1715.24 (lactone), 1998.20, 2880.21, 2940.05 (C-H 
stretching), 2320.12, 3278.23, 3601.11, 3624.07 and 
3788.13. The spectral characteristics of the 
hydrolysis product were as follows: IR spectrum 
3278 (broad, OH), 2940 and 2880 (C-H stretching), 
3601 to 2880 (broad nature of peak, COOH), 1715 
(COOH), 1426, 1331, 1268, 1201 and 1060 cm-1(Jois 
and Gurusiddaiah, 1986). 

The Mass spectrum revealed that the 
molecular weight is 396 and NMR-spectrum 
exhibited the multiple at δ 5.0 to 4.85 was due to the 
methine proton-bearing ester bonded oxygen (R-CH-
O-COR)., the doublet at δ 1.24 was due to the 
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methylene group of homononactic acid moieties 
attached to a carbon-bearing ester-bonded oxygen (R-
CH2-CHOCOR). Multiplets at δ 4.1 to 3.95 and 3.95 
to 3.75 are characteristics of tetrahydrofuran methine 
protons (-CH-O-CH-). Peaks at δ 2.1 to 1.7 were 
assigned to methylene protons of the tetrahydrofuran 
moiety (-CH2-CH2-) (Kumar and Kannabiran, 2010). 
The biochemical tests of the antifungal agent gave 
positive reaction ninhydrin, ferric chloride and Mayer 
tests and negative results with nitroprusside, 
Molish’s, Fehling Sakaguchi and Ehrlish reactions. 
Similar results were recorded by (Pamboukian and 
Facciotti, 2004 and Atta et al., 2011).  

The MIC of antifungal antibiotic was 
determined and the results showed that the minimum 
inhibitory concentration (MIC) of the compound 
against unicellular fungi Saccharomyces cervisiae 
ATCC 9763 (31.25 µg/ ml) and Candida albicans, 
IMRU 3669 (25.25 µg/ ml) and maximum inhibitory 
activity was observed against filamentous fungi 
Aspergillus niger IMI 31276 (46.9 µg/ ml), 
Aspergillus flavus (46.9), Botrytis fabae (46.9 µg/ ml), 
Fusarium oxysporum (52.7 µg/ ml), Rhizoctonia 
solani (52.7 µg/ ml), Alternaria alternate (62.5 µg/ 
ml), Aspergillus fumigatus ATCC 16424 (62.5 µg/ 
ml), and Penicillium chrysogenium (62.5 µg/ ml), 
similar investigations and results were attained by 
(Kavitha and Vijayalakshmi, 2007 and Atta, 2010). 

Identification of the antifungal agent 
according to recommended international keys 
indicated that the antibiotic is suggestive of being 
Macrodiolide antibiotic (macrotetrolide antibiotic) 
(Jois and Gurusiddaiah, 1986). 
 
5. Conclusion 

It could be concluded that: The 
Macrodiolide antibiotic produced by Streptomyces 
albidoflavus, 143 demonstrated obvious inhibitory 
affects against pathogenic fungi. 
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