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Abstract: In this paper, H2 & H∞ contro1 for an active suspension system are presented. These Controllers are 
designed for the order reduced model of the plant that makes the design problem so easy, But preserves the 
performances and stability of the nominal closed loop system. Some constraints on the Input and output sensitivity 
functions are considered. The results show control specifications are met to large extent with both methods. 
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1. Introduction 

An active suspension system is used for 
disturbance attenuation in a large frequency band and 
in the presence of the load variation. Active 
suspension systems are currently of great interest in 
both academia and industry. A literature survey on 
suspension system shows that several models and 
controllers have been developed in attempts to 
enhance and improve the ride and handling qualities 
in today's vehicle Amirifar (2003), Ray (1991). 
Linear controllers are the main group of these 
controllers. In the linear control philosophy, it is 
assumed that the system's state exhibit only small 
variations around the equilibrium point, so that a 
linear approximation model can be used. Existing 
linear controllers range from PID to robust 
multivariable controllers Thompson (1989), Landau 
(1995), Landau (1995), Amirifar (2006), Thompson 
(1976), Kuo (1999), Aghaie (2007)1]. In Landau 
(1995) robustness analysis and synthesis methods 
based on stochastic stability robustness for a quarter- 
car model was presented that can be applied to higher 
order active suspension systems. However, such 
approach requires large feedback gain and reasonable 
phase must be selected. In Landau (1995) the 
centralized/ local optimal output feedback controller 
(CLOFC) was developed for active suspension 
systems. In Amirifar (2006) and Thompson (1976) 
optimal control theory was applied to the design of an 
active suspension system. The used performance 
index is based on ride quality, suspension deflection, 
and tire deflection. In Thompson (1989) a 
combination of the H∞ and LQR methods was used 
to improve the system performance when it is subject 
to external disturbances, e.g., road irregularities, and 
parameter uncertainties, e.g., vehicle weight as 
payload varies. Even though this method provided 
better performance, its application to a vehicle 
suspension  

System is difficult, since the H∞ method 

often results in complex high- order controllers even 
the design model is of reasonable size Karnopp 
(1983). In order to reduce the order of high-order 
controllers, controller order reduction techniques can 
be used. In Sunwoo (1991) a new controller order 
reduction technique with stability and performance 
preservation via LMI optimization was presented and 
implemented on an active suspension system. The 
controller order reduction problem was reduced to an 
LMI problem, so it can be solved efficiently. The 
fixed parts of the high-order controller which should 
be preserved in the reduced-order controller, and 
many other specifications on the reduced-order 
controller that can be expressed as LMIs constraints, 
can easily be treated. 

The novelty of this paper is the presentation 
of the classical H2 & H∞ control schemes for the 
active suspension system. The control specifications 
are enforced in the H2 & H∞ problems as the 
constraints on the input and output sensitivities. The 
desired performances are obtained by precise 
selection of the weighting functions that may affect 
the stability of the closed loop system in turn. In this 
paper, the reduced order model of the system is used 
to design the controllers, but performance indexes 
and stability are examined for the main system. The 
simulation results for both of H2 & H∞ controllers are 
given and compared. 

The reminder of this paper is organized as 
follows. In section 2, an active suspension system is 
introduced. Section 3 is devoted to the H2 & H∞ 
controller design for robustifying, achieving the 
wanted performances and the stability margins. 
Finally, section 4 presents the concluding remarks. 

 
2. Active suspension system  

The schematic diagram of the active 
suspension system is shown in Figure 1. 
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Figure 1. Schematic diagram of the active suspension 
system 

 
Two models for the system will be 

identified, corresponding to the primary and 
secondary path. The input of the primary path 
(excitation of the shaker), u is the input of the 
secondary path (proportional to the piston position) 
and y is the system output (residual force).  

The active hydro-suspension system reduces 
the machine vibration at the resonance frequency. 
The principal parts of the suspension system are 
given below: 
1. an elastomere cone that encloses the main 
chamber filled with silicon oil (1);  
2. an inertia chamber enclosed with a flexible 
membrane (2);  
3. A piston (3) that is fixed on a DC motor. 
When the position of the piston is fixed, the 
suspension system is passive;  
4. An orifice (4) that allows oil flow between 
two chambers.  
The principal idea of the active suspension is to 
change the elasticity of the system in order to absorb 
the vibrations generated by the machine that we want 
to isolate. For the experimental purposes the machine 
is replaced by a shaker which is driven by a computer 
generated control signal. 

The output of the system is the measured 
voltage corresponding to the residual force. The 
control input drives the position of the piston via an 
actuator. The transfer function, F(s) between the 
excitation of the shaker and the residual force is 
called the primary path. The secondary path is 
defined as the transfer function between the control 
input and the residual force. 

The magnitude analysis of the frequency 
response of the primary path obtained by spectral 
analysis is shown in Figure 2, this analysis shows that 
there are several vibrational modes, with the first 
mode at 31.47 Hz and the second mode around 
160Hz are the most important ones. 

 
Figure 2. Magnitude of the frequency response of the 
primary path 

 
The structure of the controlled active 

suspension system is given in the Figure 3. 
 

 
 

Figure. 3. Block diagram of the controlled active 
suspension system 

 
In this section, the design of a controller for 

the active suspension system is considered. A 15-th 
order continuous-time model of the secondary path 
G(s) is used for scheme. G(s) consists of several 
vibration modes, whereas the first mode around 30 
Hz, and the second mode around 160 Hz are the most 
important ones. In order to consider the effects of the 
most important modes during the controller design 
procedure, a low-order model, namely, G1(s) is 
obtained by truncating the high frequency modes. 
Figure 4 shows the magnitude Bode plot of G(s) and 
G1(s).  

 

K(s) G(s) 

F(s)

d(t)

r(t) u(t) y(t)
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Figure 4. The magnitude Bode plot of G(s) and G1(s). 
 
3. Controller design and simulation results 

The control goal of this system is to 
compute a linear controller which minimizes the 
residual force around the main vibration modes of the 
primary path model and to try to distribute the 
amplification of the disturbances over the higher 
frequencies.  

The control objective can be presented in 
terms of the constraints for the closed-loop sensitivity 
functions. The output sensitivity function of the 
nominal closed loop system,  is defined as ( )ypS s

1( )
1 ( ) (ypS s

G s K s
=

+ )
                                           (1) 

The input sensitivity function of the nominal 
closed loop system, Sup(s) is defined as  

( )( )
1 ( ) (up

K sS s
G s K s

= −
+ )

                                        (2) 

The modulus of the output and input 
sensitivity functions must be bounded above in the 
frequency domain by the special constraints. Figure 5 
and Figure 6 show the magnitude Bode plot of the 
constraints on the input and output sensitivity 
functions used in the controller designs.  

The resulting 12-th order H∞ Controller 
achieves the control specifications approximately. 
The nominator and denominator of K(s) are given 
below. Figure 7 and 8 show the magnitude bode plot 
of the sensitivity functions obtained by controller 
implementation. 
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Figure 5: Output sensitivity constraint (dashed-dot) 
and the inverse of the Output sensitivity weighting 

function of H∞ Controller (dotted) and the inverse of 
the Output sensitivity weighting function of H2 

Controller (solid) 
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Figure 6. Input sensitivity constraint (dotted) and the 
inverse of the Output sensitivity weighting function 
of H∞ Controller and H2 Controller (solid) 
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Figure 7. Output sensitivity function constraint 
(solid) and output sensitivity function (dotted), with 
H∞ controller 

 
The resulting 10-th order H2 Controller 

achieves the control specifications approximately. 
The nominator and denominator of K(s) are given 
below. Fig. 9 and 10 show the magnitude bode plot of 
the sensitivity functions obtained by controller 
implementation. 
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Figure 8. Input sensitivity function constraint (solid) 
and input sensitivity function (dotted), with H∞ 
controller 
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Figure 9. Output sensitivity function constraint 
(solid) and output sensitivity function (dotted), with 
H2 controller 
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Figure 10. Input sensitivity function constraint (solid) 
and input sensitivity function (dotted), with H2 
controller 

 
The gain margin and phase margin of the 

controlled system are presented in table. 1. Results 
show that the controlled system is stable and is 
sufficiently far from stability margins. 

 
Table. 1 stability margins 

 H2 Controller H∞ Controller 
Gain Margin 5.0897 6.5464 
Phase Margin 109.9230 130.5152 

 
 

3. Conclusion 
An application of the H2 & H∞ controls to an active 

suspension system has been presented. By translating 
the control goals on the input and output sensitivity 
functions, a mixed sensitivity problem has been 
obtained. The reduced order model of the system is 
used to design the controllers, but performance 
indexes and stability are examined for the main 
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system. The final solutions are the 10th-order H2 
controller and the 12th-order H∞ controller that 
achieve all design specifications and have good 
stability margins. It is clear that the H∞ controller has 
higher order than the H2 controller but give better 
performances. 
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