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Abstract: In this paper, we apply the collocation methods of meshfree RBF over differential equation containing 
partial derivation of one dimension time dependent with a compound boundary nonlocal condition. in this work, we 
compare efficient collocation methods in order to obtain approximate solution of nonlocal parabolic differential 
equations. 
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1. Introduction 
 

In the recent decades the meshless methods 
became more considerable for their good flexibility 
in the finite dimension spaces; therefore the 
collocation of RBF methods are always successful 
[6,15] when they obtained suitable results over some 
types of differential equations containing time 
dependent partial derivations. If we apply special 
precision in selection of radial basis function, PDE 
equation solution can be approximated well, too. 

In this paper, we focus on the solution of one 
dimensional and nonclassical parabolic time 
dependent differential equations which they have a 
mixture of integral term and  th-derivation of an 

unknown function u  in nonlocal boundary 
conditions where {0,1} . 

Here, we try to solve the above equation by 
different RBF collocation methods. 

Consider the following non-classic boundary 
value parabolic equation: 
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where {0,1},  , ][0,, 21 lxx  , R  and 

the functions f , g , h , are all known and 

ltbTt  )(<0,<0 . 

.   
In the cases that )(tb  is a constant function, 

0=),( txq , and lx =1 , 0==   an implicit 

finite difference method is offered for its numerical 
solution by Cannon and Vander Hoek [3,4]. 

This equation has been solved by Dehghan 
and Tatari [17] with the boundary condition 

0==   , {0,1}1x  and constant function 

)(tb  by GA-RBF, and then improved by them 

[7,18]. Chen et. all also used radial basis function for 
PDE's in [5]. Some papers have been written to solve 
partial differential equations using the collocation 
method with radial basis functions [8,9,10,13,14,16]. 
Fornberg and Piret used radial basis function for 
solving a convective partial differential equations on 
a sphere [12]. 

We introduce some basic concepts of radial 
basis functions in Section2, then we try to impose 
them on the mentioned differential equations. In 
Section 3, we give some numerical examples and 
numerical results of these examples. Finally, we 
present the Conclusion in Section 4. 
 
2. Radial Basis Functions Knowledge  

For a fixed point Rd
j x  , a radial basis 

function is defined as:  

( ) = ( )j j  x x x  (3) 

 which is a function only dependent on the 
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distance between dx R  and the point jx . This 

function is radially symmetric near the center jx . 

Throughout of this work we use GA, MQ, IMQ and 
IQ-RBF with the following forms, respectively 
 

)(exp=)( 2crr   (4) 

  
22=)( crr   (5) 

  
122 )(=)(  crr  (6) 

 
122 )(=)(  crr  (7) 

where c  is a shape parameter which should be 
considered suitably also the Euclidean distance is 
considered for the RBF.These types of functions have 
a global support and they are suitable for 
interpolation of scattered data [2,11] . 

 
3. Solving PDE’s by Radial Basis Functions 
 

Consider the following problem:  
](0,),(),,(=),( TtxtxqtxLu   (8) 

 which   is a spacial domain and L  is a second 
order linear parabolic operator. Also consider the 
initial and non-local boundary operators, respectively 
as follows:  

{0}),(),(=),( txxftxu  

and for  )(0,),( Ttx   we have two 

operatores (9) 
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 By considering:  
= ( , )x tx  

we try to find an approximating function ( )p x  over 
2R  for the solution of the problem in the following 

form:  

=1
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where j 's are real coefficients. 

 
Suppose that the following sets contain a 

collocation of scattered nodes in every levels of 

interpolation for 1> TT  
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 and the problem has a solution in 
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 and  

1= ( ), = 1,...,i iq q i Nx  

we have a linear system of equations  
qH =  

where ][= ijhH , ][= j  

Also applying initial operator lead us to an 
others linear system of equations:  

fZ =  

where ][= ijzZ , such that  for mj 1,...,=  and 

21 1,...,= NNi   

= ( ),ij i jz  x x  

Now  for mj 1,...,=  and 32 1,...,= NNi  we 

define  

1= ( ),ij i jv S  x x  

and for mj 1,...,=  and mNi 1,...,= 3   

 

       2= ( ).ij i jw S  x x  

By considering: 

         
guS = , huS =   

we have 
 

            ,= gV  

and  

             = .W h  
By considering  

TWVZHA ],,,[= ,  

  
ThgfqB ],,,[= ,  

and 

][= j   

We have the following linear system of equations 
with a mm  coefficient matrix  
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BA =   

 A  is an ill-conditional full and non-
symmetric matrix which its condition number may be 
large. But it is strictly positive definite. 

This system, besides, has always a unique 
solution that we can convert the matrix to the same 
small matrixes accompany with better and smaller 
condition number and represent an acceptable 
solution by preconditioning coefficient matrix with 
the help of numerical methods. Since, finding 
solution for large times needs a lot of operators and 

memory, so, if 1T  is chosen such that a small number 

of the collocation points provides an accurate 

approximation in ][0, 1T ,[4] we can solve this 

linear system easily by factorization methods in every 
level of small times accompany with discritization of 
space and time variables [17], because in every level 
of time resulted matrix have a small dimension and 
then computing will be done easily. 

Chosen points, will produce the same matrix 
in every level of time that we just need 
decomposition of a matrix [1], Since a set of 
scattered nodes will use instead of mesh of whole 
points domain. 

This advantage of mentioned collocation 
method will be result in computing solution in 
different level of time without instability. 

 
3. Numerical Examples 
 

In this section two examples are given which 
have been solved by considering IMQ, MQ, GA and 
IQ radial basis functions. In all examples we used the 
method for the first layer of equations. 

  
  Example 11 
 In this example, we considered the problem 

by using  

[0,1].=,
8
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and  
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2
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1.<<01,<00,=),( xttxq   

and 0.0020  t ,  10  x ; in relations (1)-(4). 

By considering 33=m , 0.0020  t , 20= , 

2=c , 0.1=x  and 0.001=t  we have the 
following error functions 

 
 

 
 Figure 1: IMQ-RBF method    

 
 

 
Figure 2: GA-RBF method 

 
  

 
  

 
Figure 3: IQ-RBF method   
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Figure 4: MQ-RBF method 

 
 
The exact solution of this problem is  

)2(exp)
2
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 (12) 

 
  
  Example 22   
 In this example, we considered the problem 

by using  
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and  
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1.<<01,<00,=),( xttxq   

and 0.0020  t ,  10  x ; in relations (1)-(4). 

By considering 33=m , 0.0020  t , 20= , 

3=c , 0.1=x  and 0.001=t  we have the 
following error functions 

 

 
Figure 5: GA-RBF method    

 
 

 
Figure 6: IMQ-RBF method 

 
   

 
Figure 7: IQ-RBF method    

 

 
Figure 8: MQ-RBF method 

 
The exact solution of this problem is  

)2(exp=),( txtxu   (13) 

 
3. Conclusion 
          In such problems, the traditional mesh methods 
will never offer because we can do discretization of 
variables by collocation methods so that the cost of 
computations and discretization of variables will 
reduce strongly. Thus, meanwhile approximating 
accurate and correct solution, we have at least error 
and we are able to change the time and space interval 
divisions in every level. The used radial basis 
function is a collocation method in this type of 
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problems and if we take care in selection of radial 
basis functions approximants and their shape 
parameter we can obtain more accurate solution with 
less error. 
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