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Abstract: This paper is concerned with the evaluation of the diffusion coefficient based on the measurement 
obtained at the boundary by using a numerical approach. We consider the problem of recovering the diffusion 
coefficient of a rod that is a function of space. The approach is based on finite-difference method and the least-
squares scheme. At the beginning of the algorithm, the finite-difference method is used to discretize the problem 
domain. The present approach is to rearrange the matrix forms of the differential governing equations and estimate 
unknown diffusion coefficient. The least-squares method is adopted to find the solution. This solution is unstable, 
hence the problem is ill-posed. This instability is overcome using the Tikhonov regularization method with the gcv 
criterion for the choice of the regularization parameter. The stability and accuracy of the scheme presented is 
evaluated by comparison with the Singular Value Decomposition method (SVD). Results show that a good 
estimation on the diffusion coefficient can be obtained within a couple of minutes CPU time at pentium IV-2.4 GHz 
PC. 
[R. Pourgholi. Solving an Inverse Diffusion Problem Using Tikhonov Regularization Method. Journal of American 
Science 2011;7(5):850-855]. (ISSN: 1545-1003). http://www.americanscience.org. 
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1  Introduction 

Inverse problems appear in many important 
scientific and technological fields. Hence analysis, 
design implementation and testing of inverse 
algorithms are also are great scientific and 
technological interest. 

Several functions and parameters can be 
estimate from the inverse problem: static and moving 
heating sources, material properties, initial conditions, 
boundary conditions, optimal shape etc. 
Fortunately, many methods have been reported to 
solve (IHCPs) [1]-[5], [6], [13], [14], [16]-[19], and 
among the most versatile methods the following can 
be mentioned: Tikhonov regularization [22], iterative 
regularization [1], mollification [15], BFM (Base 
Function Method) [16], SFDM (Semi Finite 
Difference Method) [13], and the FSM (Function 
Specification Method ) [2]. 

Beck and Murio [4] presented a new method 
that combines the function specification method of 
Beck with the regularization technique of Tikhonov. 
Murio and Paloschi [14] propose a combined 
procedure based on a data filtering interpretation of 
the mollification method and FSM. Beck et al. [3] 
compare the FSM, the Tikhonov regularization and 
the iterative regularization, using experimental data. 
Another effective technique to solve ill-posed 
problems is based in the Singular Value 
Decomposition (SVD) of an ill condition matrix [8]. 

The plan of this paper is as follows: In 
section 2, we formulate an inverse diffusion problem. 
A method consists of Tikhonov regularization to the 

matrix form of least-squares method for solving this 
inverse problem will be presented in section 3. 
Finally some numerical experiment will be given in 
section 4. 
 
2  Mathematical formulation 

 Consider a one-dimensional rod whose 

thermal conductivity )(xk  is a function of space. 

The conduction of heat is governed by the equation 
given by 
 

t x x MT k x T x t t=(()),0< <1,0<<                 (1) 

1,0),(=,0)( ≤≤ xxfxT                               (2) 

,0),(=)(0, MtttptT ≤≤                               (3) 

,0),(=)(1, MttttT ≤≤φ                                (4) 

 and the overspecified condition  

,0),(=),( MtttqtaT ≤≤                               (5) 

 where 10 ≤≤ a  is a fixed point, Mt  is a given 

constant, )(xf  is the initial temperature of rod, 

)(tp  is the temperature at the left-hand side and 

)(tφ  is the temperature at the right-hand side. In this 

context we consider that the functions )(xf , )(tp , 

and )(tφ  are known functions, while 0>)(xk  and 

),( txT  are unknown functions which remain to be 

determined. Note that, for an unknown positive 

function )(xk  we must therefore provide additional 
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information (5) to provide a unique solution 

))(),,(( xktxT  to the inverse problem (1). 

The inverse problem for the above system is 

then to recover the unknown function )(xk  based on 

the knowledge of the initial temperature, )(tf , 

temperature )(tp  at the boundary 0=x , 

temperature )(tφ  at the boundary 1=x , and the 

measured temperature of the rod )(tq  [19]. 

 
3. Overview of the Method  

 Consider an inverse diffusion problem 
described by the equations (1). The application of the 
present numerical method will find a solution of 
problem (1), by using the following steps. 

 
3.1. Finite difference method for discretizing  

 
The explicit finite differences approximation 

for discretizing problem (1) may be written as 
follows [20] 

i j i j i j i j
i

i j i j
i

T T k T T
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,0,...,=),(=0, MjtpT jj                           (8) 

,0,...,=),(=, MjtT jjN φ                          (9) 

 where Nitjtxix ji 0,1,...,=,=,= δδ  and 

Mj 0,1,...,= . Equation (6) for 1)(1,...,= −Ni  

may be written in the following matrix form 
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and  

( )...t
j j j N jT T T T −1, 2, 1,= , 

 

( )...t
j j j N jT T T T+ + + − +1 1, 1 2, 1 1, 1= , 

( )...t
j j N N jC r T r Tβ α −10, 1 ,= 0 0 , 

where, for 1,1,2,= −NΚν ,  

r k k rk rkν ν ν
ν ν ν ν

γ α β
− + + −

− +1 1 1 1

2 2 2 2

=1 ( ), = , = . 

 

Theorem. If µk  be the maximum value of 

|bi
k Nν ν+ −| ; =1,, 1,K ib −

1
=(1) ;

2
,...,i =1 t

then the finite difference scheme (10) is stable for 

µk
r

2

1
< . 

Proof. In system (10), the matrix determining the 

propagation of the error is A . Therefore scheme (10) 
will be stable when the modulus of every eigenvalue 

of A  does not exceed one. Application of 

Gerschgorins circle theorem to the matrix A  shows 

that its eigenvalues λ  lie on or within the circle  

,|| sssa σλ ≤−  

where sσ  is the sum of the moduli of the elements 

along the sth  row excluding the diagonal element 

ssa . 

Hence, for row 1 we obtain 
µk

r
3

2
< . 

Similarly for row 1−N  we require 
µk

r
3

2
< . 

For rows 2,2, −NΚ  we obtain 
µk

r
2

1
< . 

For overall stability, we obtain 
µk

r
2

1
< .  

By solving the equation (10), we obtain  

( )...t
j j j N jT T T T+ + + − +1 1, 1 2, 1 1, 1= ,                     (11) 

 These updated values of 1+jT  are used to calculate 

A , jT , and jC  for iteration. This computational 

procedure is performed repeatedly until desired 
convergence is achieved. 

 
Remark: In this work the polynomial form proposed 

for the unknown )(xk  before performing the 

calculation. Therefore )(xk  approximated as  

,...=)( 2
210

λ
λxaxaxaaxk ++++                (12) 
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 where },...,,{ 10 λaaa  are constants which remain to 

be determined. 

The unknown function )(xk  is difficult to 

be approximated by a polynomial function for the 
whole time domain considered. Therefore the time 

domain Mttt ≤≤0  will be divided into some 

intervals where 0t  is the initial measurement time. 

Each of the intervals is assumed to be mm ttt ≤≤−1  

where tmttm ∆+0= , Mm 1,...,=  and  

M

tt
t M 0=

−
∆ .  

For linearized nonlinear terms in equations 
(11) we use Taylor's series expansion. Let 

),...,( 1 nξξΨ  be a many differentiable nonlinear 

function of nξξ ,...,1  then its Taylor's series 

expansion is given as  

n n

n

n Oλ λ λ λ
λ λ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ
ξ

Ψ Ψ +

∂Ψ
− + −

∂
∑

1 1

2
1

=1

(,...,)= (,...,)

(,...,)( ) (( )),
  (13) 

 where the overbar denotes the previously iterated 
solution. Therefore we obtain  
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 where ( )a a0,...,l  denotes the previously iterated 

solution. 
 

 3.2. Least-squares minimization technique and 
the Tikhonov regularization method  

 
The estimated coefficients 

λΚ ,0,1,= ; iiaii  can be determined by using least 

squares method when the sum of the squares of the 

deviation between the calculated 
1, +j

x

aT
δ

 and the 

measured ))1)(( kjq +  at ax =  is less than a 

small number. The error in the estimates 

),...,,( 10 λaaaE  can be expressed as  

i

a
j

j x

E a a a

T q j k i
δ

+
− +∑

0 1

2

, 1
=0

(,,...,)=

( (( 1))), =1,2,,

l

K
          (15) 

 which is to be minimized for each interval 

Mmttt mm ,1,= ,1 Κ≤≤− . To obtain the 

minimum value of ),,...,,( 10 λaaaE  with respect to 

λaaa ,...,, 10 , differentiation of ),,...,,( 10 λaaaE  

with respect to ,,...,, 10 λaaa  will be performed. 

Thus the linear system corresponding to the values of 

ia  can be expressed as 

.= BΛΘ                                                               (16) 

The Matrix Λ  is ill-conditioned. On the 
other hand, as q  is affected by measurement errors, 

the estimate of Θ  by (16) will be unstable so that the 
Tikhonov regularization method must be used to 
control this measurement errors. The Tikhonov 
regularized solution ([21], [10] and [11]) to the 
system of linear algebraic equation (16) is given by  

sF B Rα αΘ ΛΘ − + Θ
22 ()

2 2
()= . 

On the case of the zeroth order Tikhonov 

regularization method the matrix 
)(sR , for 0,=s  is 

given by, see e.g. [12]:  

,=(0) MM
MM RIR ×

× ∈  

Therefore, we obtain the Tikhonov regularized 
solution of the regularized equation as  

.])([= 1)()( BRR TsTsT Λ+ΛΛΘ −αα  

In our computation, we use the gcv scheme 
to determine a suitable value of α  ([7], [9] and [23]). 
 
4. Numerical Results and Discussion  

In this section, we are going to demonstrate 
numerically, some of results for the unknown 
diffusion coefficient in the inverse problem (1). The 
propose of this section is to illustrate the applicability 
of the present method described in section 0 for 
solving inverse diffusion problem (1). As expected 
the inverse problems is ill-posed and therefore it is 
necessary to investigate the stability of the present 
method by giving a test problem. 

In an IHCP, there are two sources of error in 
the estimation. The first source is the unavoidable 
bias deviation (or deterministic error). The second 
source of error is the variance due to the 
amplification of measurement errors (stochastic 
error). The global effect of deterministic and 
stochastic errors is considered in the mean squared 
error or total error, [5]. 

We also compare Tikhonov method and 

SVD method by considering total error S  defined by  

ˆ
N

i i
i

S q q
N

−
−

∑
1

22

=1

1
=[ ( )],

1
                               (17) 



Journal of American Science, 2011;7(5)                                                    http://www.americanscience.org 

  

http://www.americanscience.org            editor@americanscience.org 853

 where N  is the total number of estimated values. 
 

Example.   
In this example, let us consider following 

inverse diffusion problem,  

t x x MT k x T x t t=(()),0< <1,0<<                 (18) 

1,0,=,0)( ≤≤ xxxT                                    (19) 

,0,2=)(0, MttttT ≤≤                                 (20) 

,0,21=)(1, MttttT ≤≤+                           (21) 

 and the overspecified condition  

.0,20.5=),( MttttaT ≤≤+                       (22) 

The exact solution of this problem is  

T x t x t k x x+(,)= 2,()=2, 
Tables 1 and 3 show the comparison 

between the exact solution and approximate solution 
result from our method by Tikhonov regularization 
0th and SVD regularization with noiseless data. 
Table 2 and 4 and figures 1 and 2 show these 
comparisons with noisy data. Finally, we compare 
two methods with computation total error by (17) 
 
Table 1. The comparison between exact and  

Tikhonov and SVD solutions for )( xik δ  with 

noiseless data when 0.1=xδ .  

 
  i   

 
 Exact  

 
 SVD 

  
Tikhonov 0  

  )( xik δ   )(
~

xik δ   )(
~

xik δ  

 1  

0.200000  

 

0.200000  
 0.200000  

2   

0.400000  

 

0.400000  
 0.400000  

3   

0.600000  

 

0.600000  
 0.600000  

4   

0.800000  

 

0.800000  
 0.800000  

5   

1.000000  

 

1.000000  
 1.000000  

6   

1.200000  

 

1.200000  
 1.200000  

7   

1.400000  

 

1.400000  
 1.400000  

8   

1.600000  

 

1.600000  
 1.600000  

9   

1.800000  

 

1.800000  
 1.800000  

 S   e −7.9 015  e −7.6 015 

 

Table 2. The comparison between exact and 

Tikhonov and SVD so lutions for )( xik δ with noisy 

data when 0.1=xδ .  

  
i   

 
 Exact  

 
 SVD 

 
 Tikhonov 0  

  )( xik δ   )(
~

xik δ   )(
~

xik δ  

 1  

0.200000  

 

0.206294   
0.206294   

2   

0.400000  

 

0.412587   
0.412587   

3   

0.600000  

 

0.618881   
0.618881   

4   

0.800000  

 

0.825175   
0.825175   

5   

1.000000  

 

1.031468   
1.031468   

6   

1.200000  

 

1.237762   
1.237762   

7   

1.400000  

 

1.444056   
1.444056   

8   

1.600000  

 

1.650349   
1.650349   

9   

1.800000  

 

1.856643   
1.856643   

 S   0.037564   0.037564  

 
 
Table 3. The comparison between exact and 

Tikhonov and SVD solutions for )(0.7, tjT δ  with 

noiseless data when 0.002=tδ . 
 
 
j   

 
 Exact  

 
SVD  

 
 Tikhonov 0  

  )(0.7, tjT δ   )(0.7,
~

tjT δ  )(0.7,
~

tjT δ   

 1  0.704000   0.704000   0.704000   

2   0.708000   0.708000   0.708000   

3   0.712000   0.712000   0.712000   

4   0.716000   0.716000   0.716000   

5   0.720000   0.720000   0.720000   

 S   3.9 018e −   6.8 018e −   
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Table 4. The comparison between exact and 

Tikhonov and SVD solutions for ( , )T x t   with 

noisy data when = 0.002tδ .  

 
t
 

 Exact   SVD Tikhonov 0  

  

)(0.7, tjT δ
  

)(0.7,
~

tjT δ
 

)(0.7,
~

tjT δ
  

1
 

0.704000  0.704126
  

0.704126   

2
 

0.708000  0.708252
 

 0.708252   

3
 

0.712000  0.712378   0.712378   

4
 

0.716000  0.716498   0.716498   

5
 

0.720000  0.720613   0.720613   

 S   1.4 005e −
 

1.4 005e −  

 
5. Conclusion 

 A numerical method, to estimate unknown 
boundary condition is proposed for these kinds of 
IHCPs and the following results are obtained. 
1. The present study, successfully applies the 
numerical method to IHCPs. 
2. Numerical results show that an excellent 
estimation can be obtained within a couple of 
minutes CPU time at pentium(R) 4 CPU 3.20 GHz. 
3. The present method has been found stable with 
respect to small perturbation in the input data. 
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