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Abstract: In this paper, we intend to introduce a new heuristic algorithm to apply maximum minimization to 
Boolean functions with normal SOP form. To implement the proposed algorithm, we use the graph data structure 
and define the adjacencies. Also, we demonstrate some conditions to achieve the maximum minimization. Through 
this paper, the problem of shared vertices in more than one adjacency is talked, and the solution is presented. 
Karnaugh map is used to clarify the matter.  
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1. Introduction 
 Minimization of Boolean functions is one of 
the basic operations in Boolean algebra [1]. This is 
also useful in digital circuits design [2], and it was 
been regarded to decrease the price of manufactured 
circuits by removing extra gates [3,4]. In this paper, 
we present an algorithm to minimize the Boolean 
functions extremely. We use the graph data structure 
to implement this algorithm. 
 Before it, some methods and algorithms was 
introduced like "Factoring Boolean functions using 
graph partitioning" [5] or "A Heuristic Method of 
Two-Level Logic Synthesis" [6]. These methods are 
absolutely heuristic, and they don't give the 
maximum minimized form of Boolean function all 
the time. The method that we are going to introduce 
is a simple way to reach the maximum minimized 
form of Boolean function. Also, it could be used in 
education, because of its simplicity. 
 In second part which is entitled as "Graph 
data structure and agreements", the structure of 
proposed graph and its objects and methods will be 
talked. In addition, some agreements are presented 
which are considered during this paper. In third part 
that is named "SOP functions and graph", the 
relationship between SOP functions and graph data 
structure is objected. Furthermore, the conditions of 
minimization of function by proposed graph are 
demonstrated. In "Minimization algorithm", that is 
forth part of this paper, the algorithm of minimization 
and its description is presented. Eventually, 
"conclusion" is places as fifth part. 
 
2. Graph data structure and agreements 
 First time, graph has been used for solving 
the classic problem of Königsberg bridges by 

Leonhard Euler in 1736. After that, graph came into 
mathematics world [7]. 
 A graph is constructed of two sets, V 
(vertices) and E (Edges). For example, look at Figure 
1. 
 
 

 
 

 A path in graph is a set of vertices we should 
cross to get to a special vertex. If the initial and final 
vertices are the same, this path is called cycle, and if 
all the edges in a cycle are met just one time, it is 
called a simple cycle [8,9,10]. 
 According to these definitions, there is one 
simple cycle in Figure 1, which is {1,2,4,3}. Here, we 
make two agreements and describe the reason in third 
part of paper. 
 
Agreement1: Each vertex makes a simple cycle by 
itself. 
 
Agreement2: A couple of adjacent vertices make a 
simple cycle. 
(Adjacent vertices are those which are related by an 
edge.) 
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G=(V,E) 
V={1,2,3,4,5} 
E={(1,2),(1,3),(2,4),(3,4),(4,5)} 

Figure 1. A simple example of graph 
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 According to these agreements, the simple 
cycles for Figure 1 are like below: 
 
{1} , {2} , {3} , {4} , {5} 
{1,2} , {1,3} , {2,4} , {3,4} , {4,5} 
{1,2,4,3} 
 
 Now, we can implement the class of 
proposed graph data structure [11,12]. This class 
contains some objects to store V and E, and also some 
methods to create and remove vertices and edges 
[13,14]. In addition, there is a method that returns the 
list of all simple cycles which begins with Vi. Another 
method is defined to return the number of all adjacent 
vertices of Vi, too. 
 
Class Graph 
{ 
      //Objects 
 // Data containers to store Vertices and Edges 

 
      public: 
 Graph(); 
         // To create an empty graph 
 bool IsEmpty(); 

// If graph has no vertices returns TRUE(1), else 
returns FALSE(0) 

 void AddVertex(Vertex V); 
         // Insert a new vertex 

void AddEdge(Vertex U , Vertex V); 
        // Insert a new edge between u and v 

 void RemoveVertex (Vertex V); 
         // Deletes v and all edges incident to it 

void RemoveEdge(Vertex U , Vertex V); 
        // Deletes edge (u,v) 
list Cycles(Vertex Vi); 
        // Returns the list of all cycles that begins with  Vi 
int AdjacentVertices(Vertex Vi); 
        // Returns the number of adjacent vertices of Vi 

} 
 
3. SOP functions and graph 
 Boolean functions are used for indicating the 
performance of complex two-level circuits with AND 
- OR gates. These functions could be shown in 
normal SOP (Sum Of Products) or POS (Product of 
Sums) forms [15,16,17]. We aren't going to talk 
about algebraic concepts or the way of generating 
SOP or POS forms. Just propose that we have a SOP 
function which should be minimized. 
 There are different ways to minimize SOP 
functions. One is using the algebraic rules, which is 
hard and confusing for large functions with many 
variables. Another is using Karnaugh map. It could 
be used for functions with 2 to 6 variables, by 
drawing the map of adjacency. In fact, Karnaugh map 
is an illustrative form of truth table. It puts the 
adjacent statements near each other and provides the 
opportunity of selecting appropriate adjacency. 

Figure 2 shows the Karnaugh map for 4-variables 
Boolean functions. In this map, different states of 
variables are showed by 0 and 1 [18]. 
 
 

 
It is seen that each two adjacent cells has 

one different bit. In other word, the XOR of two 
adjacent cells equals 2r, r=0,1,2,…. 
 Consider that function (I) should be 
minimized by this map. By replacing the variables 
with 0 and 1 (function (II)), its Karnaugh map will be 
as Figure 3. 
 
(I) 
 f(w,x,y,z) = w'x'yz' + w'xy'z + w'xyz' + w'xyz + wx'yz' 
+ wx'yz + wxyz' 
 
(II) 
f(w,x,y,z) = 0010 + 0101 + 0110 + 0111 + 1010 + 
1011 + 1110 
 
 

 
 
 In Figure 3, appropriate adjacencies are 
selected, and minimization operation - which is 
remaining similar bits and removing the others [19] - 
is done. Essential condition to choose an appropriate 
adjacency is defined as (*). 
 
 
 
(*) 

   0010 

 0101 0111 0110 

   1110 

  1011 1010 

Figure 3. Karnaugh map for function (I) 
with appropriate adjacencies 

yz' 

wx'y 

w'xz 

0000 0001 0011 0010 

0100 0101 0111 0110 

1100 1101 1111 1110 

1000 

 
1001 1011 1010 

Figure 2. Karnaugh map for 4-variables 
Boolean functions 



Journal of American Science, 2011;7(6)                                                    http://www.americanscience.org 

  

http://www.americanscience.org            editor@americanscience.org 94 

The number of cells in an adjacency should be 
equal to 2k, k=0,1,2,… and no similar bits equal to 
k. 
 

Another point which should be regarded is 
that always the biggest adjacencies that contain more 
cells should be selected, in order to make the function 
more minimized, by reducing more different bits 
[1,18]. Also, it should be paid attention that in 
functions with complete statements - where all 
statements are present - minimized function equals to 
1. 
 It is seen that minimized function (I) will be 
like function (III). 
 
(III) 
f(w,x,y,z) = yz' + w'xz + wx'y 
 
Suppose that fv is a desire Boolean function. It could 
be adapted to graph data structure, if for each 
statement in it, create a vertex and show adjacencies 
by edges. For example, Figure 4 shows the graph of 
function (I). 
 

 
 

To minimize the function of this graph, first 
the biggest appropriate adjacencies should be found 
for each vertex. It has to be done regarding 
agreements 1 & 2. Now, you can find out the reason 
of making these agreements. Minimization is 
operated according to the adjacencies (not vertices), 
so for each alone vertex, an adjacency should be 
considered. For two adjacent vertices it has to be 
done, too. In mathematical definition of simple cycles 
in no directed graphs, simple cycles with less than 3 
vertices are not defined [5,9]. 

Regarding condition (*), Table 1 shows the 
biggest simple cycles in graph of Figure 4.  
 
 

Minimized Simple cycle (*)  Vertex 
yz' 0010-0110-1110-1010-(0010) 0010 

w'xz 0101-0111-(0101) 0101 
w'xz 
w'xy 

0111-0101-(0111) 
0111-0110-(0111) 

0111 

yz' 0110-1110-1010-0010-(0110) 0110 
yz' 1110-1010-0010-0110-(1110) 1110 

wx'y 1011-1010-(1011) 1011 
yz' 1010-0010-0110-1110-(1010) 1010 

 
Table 1. List of biggest cycles of graph Figure 4 

regarding condition (*) for each vertex 
 

For vertices 0010, 0110, 1110, 1010 cycles 
are the same. Consequently, the minimized forms are 
similar, too. For vertex 0111 two appropriate 
adjacency is available. In other word, the biggest 
cycle is not unique. If both of them be involved in 
final minimized function, then one extra statement is 
imposed to it. So, one of them must be chosen as 
below: 

If vertex V has more than one biggest cycle 
regarding (*), choose the adjacency that its first 
vertex (next to proposed V) has less adjacent. 

In our example, vertex 0111 has two 
adjacent 0101 and 0110. First one has 1 adjacent 
vertex, and second has 3. So, first one has to be 
chosen and w'xz should appear in final minimized 
rather than w'xy. 

The reason is when you choose the path 
which its first vertex has less adjacent, probability for 
this vertex to be included in other adjacencies is less, 
and if it has no other adjacent vertices, it couldn't 
participate in minimization operation. So, to make 
sure that it never happens, choose the path with less. 
But, if the number of adjacent vertices for both of 
them was equal, then you can choose one randomly. 
Because, they have similar circumstances and it 
doesn't differ that which one is selected. 
 
4. Minimization algorithm 
 To implement the maximum minimization 
on the introduced graph, the algorithm in below is 
offered. 
 

 
 
 
 
 
 
 

Figure 4. Graph of function (I) 
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1110 
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0111 0101 
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\\ --------------------------------- Minimization algorithm based on graph data structure ------------------------------ 
 
Create Graph of Boolean function; 
If all the vertices and edges are present then return 1; 
Else 
{ 

For each vertex V 
{ 

Find biggest cycles with the condition (*) ; 
If biggest cycle is not unique then 
{ 

Find the num of adjacent vertices of first vertex next to V in path; 
If the numbers of adjacent vertices are equal then 

Choose one randomly; 
Else 

Select the path with lest adjacent vertices for its first vertex; 
} 
Minimize (take the similar bits and reduce others); 
Store the minimized forms; 

} 
Reduce the repeated minimized statements; 
Return the minimized function; 

} 
 
 
 First, it creates a graph according to Boolean 
function. Then, it checks whether the function is 
complete, return 1. Else, find the biggest cycles for 
each vertex, and if it wasn't unique, choose the 
appropriate one. After that, minimizes the adjacency 
by taking the similar bits and reduce others. Then, it 
stores the minimized form. When these steps were 
done for all the vertices, some statements will be 
created per vertices (as you see in Table 1). After 
reducing the repeated ones, final minimized function 
will be achieved and returned. 
 
5. Conclusion 
 In this paper, we introduced a new heuristic 
algorithm to apply maximum minimization to SOP 
Boolean functions. Therefore, graph data structure as 
the essential base of this algorithm was defined, and 
two agreements were made which forked from the 
difference between mathematical definition of simple 
cycles and what we need for our object. Then, the 
method of minimization was talked, which used the 
concepts of Karnaugh map. Finally, the algorithm of 
minimization presented. 
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