
Journal of American Science, 2011;7(6) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 92

An algorithm for minimizing of Boolean functions based on graph data structure

Masoud Nosrati *1, Ronak Karimi 2, Hamed Nosrati 3, Ali Nosrati 4

1, 2 Young Researchers Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
3, 4 Islamic Azad University, Kermanshah Branch, Kermanshah, Iran.

minibigs_m@yahoo.co.uk

Abstract: In this paper, we intend to introduce a new heuristic algorithm to apply maximum minimization to
Boolean functions with normal SOP form. To implement the proposed algorithm, we use the graph data structure
and define the adjacencies. Also, we demonstrate some conditions to achieve the maximum minimization. Through
this paper, the problem of shared vertices in more than one adjacency is talked, and the solution is presented.
Karnaugh map is used to clarify the matter.
[Masoud Nosrati, Ronak Karimi, Hamed Nosrati, Ali Nosrati. An algorithm for minimizing of Boolean functions
based on graph data structure. Journal of American Science 2011;7(6):92-96]. (ISSN: 1545-1003).
http://www.americanscience.org.

Keywords: Minimization of Boolean functions; Graph data structure; SOP functions; discrete mathematics.

1. Introduction
 Minimization of Boolean functions is one of
the basic operations in Boolean algebra [1]. This is
also useful in digital circuits design [2], and it was
been regarded to decrease the price of manufactured
circuits by removing extra gates [3,4]. In this paper,
we present an algorithm to minimize the Boolean
functions extremely. We use the graph data structure
to implement this algorithm.
 Before it, some methods and algorithms was
introduced like "Factoring Boolean functions using
graph partitioning" [5] or "A Heuristic Method of
Two-Level Logic Synthesis" [6]. These methods are
absolutely heuristic, and they don't give the
maximum minimized form of Boolean function all
the time. The method that we are going to introduce
is a simple way to reach the maximum minimized
form of Boolean function. Also, it could be used in
education, because of its simplicity.
 In second part which is entitled as "Graph
data structure and agreements", the structure of
proposed graph and its objects and methods will be
talked. In addition, some agreements are presented
which are considered during this paper. In third part
that is named "SOP functions and graph", the
relationship between SOP functions and graph data
structure is objected. Furthermore, the conditions of
minimization of function by proposed graph are
demonstrated. In "Minimization algorithm", that is
forth part of this paper, the algorithm of minimization
and its description is presented. Eventually,
"conclusion" is places as fifth part.

2. Graph data structure and agreements
 First time, graph has been used for solving
the classic problem of Königsberg bridges by

Leonhard Euler in 1736. After that, graph came into
mathematics world [7].
 A graph is constructed of two sets, V
(vertices) and E (Edges). For example, look at Figure
1.

 A path in graph is a set of vertices we should
cross to get to a special vertex. If the initial and final
vertices are the same, this path is called cycle, and if
all the edges in a cycle are met just one time, it is
called a simple cycle [8,9,10].
 According to these definitions, there is one
simple cycle in Figure 1, which is {1,2,4,3}. Here, we
make two agreements and describe the reason in third
part of paper.

Agreement1: Each vertex makes a simple cycle by
itself.

Agreement2: A couple of adjacent vertices make a
simple cycle.
(Adjacent vertices are those which are related by an
edge.)

2

1

3

4 5

G=(V,E)
V={1,2,3,4,5}
E={(1,2),(1,3),(2,4),(3,4),(4,5)}

Figure 1. A simple example of graph

Journal of American Science, 2011;7(6) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 93

 According to these agreements, the simple
cycles for Figure 1 are like below:

{1} , {2} , {3} , {4} , {5}
{1,2} , {1,3} , {2,4} , {3,4} , {4,5}
{1,2,4,3}

 Now, we can implement the class of
proposed graph data structure [11,12]. This class
contains some objects to store V and E, and also some
methods to create and remove vertices and edges
[13,14]. In addition, there is a method that returns the
list of all simple cycles which begins with Vi. Another
method is defined to return the number of all adjacent
vertices of Vi, too.

Class Graph
{
 //Objects
 // Data containers to store Vertices and Edges

 public:
 Graph();
 // To create an empty graph
 bool IsEmpty();

// If graph has no vertices returns TRUE(1), else
returns FALSE(0)

 void AddVertex(Vertex V);
 // Insert a new vertex

void AddEdge(Vertex U , Vertex V);
 // Insert a new edge between u and v

 void RemoveVertex (Vertex V);
 // Deletes v and all edges incident to it

void RemoveEdge(Vertex U , Vertex V);
 // Deletes edge (u,v)
list Cycles(Vertex Vi);
 // Returns the list of all cycles that begins with Vi
int AdjacentVertices(Vertex Vi);
 // Returns the number of adjacent vertices of Vi

}

3. SOP functions and graph
 Boolean functions are used for indicating the
performance of complex two-level circuits with AND
- OR gates. These functions could be shown in
normal SOP (Sum Of Products) or POS (Product of
Sums) forms [15,16,17]. We aren't going to talk
about algebraic concepts or the way of generating
SOP or POS forms. Just propose that we have a SOP
function which should be minimized.
 There are different ways to minimize SOP
functions. One is using the algebraic rules, which is
hard and confusing for large functions with many
variables. Another is using Karnaugh map. It could
be used for functions with 2 to 6 variables, by
drawing the map of adjacency. In fact, Karnaugh map
is an illustrative form of truth table. It puts the
adjacent statements near each other and provides the
opportunity of selecting appropriate adjacency.

Figure 2 shows the Karnaugh map for 4-variables
Boolean functions. In this map, different states of
variables are showed by 0 and 1 [18].

It is seen that each two adjacent cells has

one different bit. In other word, the XOR of two
adjacent cells equals 2r, r=0,1,2,….
 Consider that function (I) should be
minimized by this map. By replacing the variables
with 0 and 1 (function (II)), its Karnaugh map will be
as Figure 3.

(I)
 f(w,x,y,z) = w'x'yz' + w'xy'z + w'xyz' + w'xyz + wx'yz'
+ wx'yz + wxyz'

(II)
f(w,x,y,z) = 0010 + 0101 + 0110 + 0111 + 1010 +
1011 + 1110

 In Figure 3, appropriate adjacencies are
selected, and minimization operation - which is
remaining similar bits and removing the others [19] -
is done. Essential condition to choose an appropriate
adjacency is defined as (*).

(*)

 0010

 0101 0111 0110

 1110

 1011 1010

Figure 3. Karnaugh map for function (I)
with appropriate adjacencies

yz'

wx'y

w'xz

0000 0001 0011 0010

0100 0101 0111 0110

1100 1101 1111 1110

1000

1001 1011 1010

Figure 2. Karnaugh map for 4-variables
Boolean functions

Journal of American Science, 2011;7(6) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 94

The number of cells in an adjacency should be
equal to 2k, k=0,1,2,… and no similar bits equal to
k.

Another point which should be regarded is
that always the biggest adjacencies that contain more
cells should be selected, in order to make the function
more minimized, by reducing more different bits
[1,18]. Also, it should be paid attention that in
functions with complete statements - where all
statements are present - minimized function equals to
1.
 It is seen that minimized function (I) will be
like function (III).

(III)
f(w,x,y,z) = yz' + w'xz + wx'y

Suppose that fv is a desire Boolean function. It could
be adapted to graph data structure, if for each
statement in it, create a vertex and show adjacencies
by edges. For example, Figure 4 shows the graph of
function (I).

To minimize the function of this graph, first
the biggest appropriate adjacencies should be found
for each vertex. It has to be done regarding
agreements 1 & 2. Now, you can find out the reason
of making these agreements. Minimization is
operated according to the adjacencies (not vertices),
so for each alone vertex, an adjacency should be
considered. For two adjacent vertices it has to be
done, too. In mathematical definition of simple cycles
in no directed graphs, simple cycles with less than 3
vertices are not defined [5,9].

Regarding condition (*), Table 1 shows the
biggest simple cycles in graph of Figure 4.

Minimized Simple cycle (*) Vertex
yz' 0010-0110-1110-1010-(0010) 0010

w'xz 0101-0111-(0101) 0101
w'xz
w'xy

0111-0101-(0111)
0111-0110-(0111)

0111

yz' 0110-1110-1010-0010-(0110) 0110
yz' 1110-1010-0010-0110-(1110) 1110

wx'y 1011-1010-(1011) 1011
yz' 1010-0010-0110-1110-(1010) 1010

Table 1. List of biggest cycles of graph Figure 4

regarding condition (*) for each vertex

For vertices 0010, 0110, 1110, 1010 cycles
are the same. Consequently, the minimized forms are
similar, too. For vertex 0111 two appropriate
adjacency is available. In other word, the biggest
cycle is not unique. If both of them be involved in
final minimized function, then one extra statement is
imposed to it. So, one of them must be chosen as
below:

If vertex V has more than one biggest cycle
regarding (*), choose the adjacency that its first
vertex (next to proposed V) has less adjacent.

In our example, vertex 0111 has two
adjacent 0101 and 0110. First one has 1 adjacent
vertex, and second has 3. So, first one has to be
chosen and w'xz should appear in final minimized
rather than w'xy.

The reason is when you choose the path
which its first vertex has less adjacent, probability for
this vertex to be included in other adjacencies is less,
and if it has no other adjacent vertices, it couldn't
participate in minimization operation. So, to make
sure that it never happens, choose the path with less.
But, if the number of adjacent vertices for both of
them was equal, then you can choose one randomly.
Because, they have similar circumstances and it
doesn't differ that which one is selected.

4. Minimization algorithm
 To implement the maximum minimization
on the introduced graph, the algorithm in below is
offered.

Figure 4. Graph of function (I)

0010

0110

1110

1010

0111 0101

1011

Journal of American Science, 2011;7(6) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 95

\\ --------------------------------- Minimization algorithm based on graph data structure ------------------------------

Create Graph of Boolean function;
If all the vertices and edges are present then return 1;
Else
{

For each vertex V
{

Find biggest cycles with the condition (*) ;
If biggest cycle is not unique then
{

Find the num of adjacent vertices of first vertex next to V in path;
If the numbers of adjacent vertices are equal then

Choose one randomly;
Else

Select the path with lest adjacent vertices for its first vertex;
}
Minimize (take the similar bits and reduce others);
Store the minimized forms;

}
Reduce the repeated minimized statements;
Return the minimized function;

}

 First, it creates a graph according to Boolean
function. Then, it checks whether the function is
complete, return 1. Else, find the biggest cycles for
each vertex, and if it wasn't unique, choose the
appropriate one. After that, minimizes the adjacency
by taking the similar bits and reduce others. Then, it
stores the minimized form. When these steps were
done for all the vertices, some statements will be
created per vertices (as you see in Table 1). After
reducing the repeated ones, final minimized function
will be achieved and returned.

5. Conclusion
 In this paper, we introduced a new heuristic
algorithm to apply maximum minimization to SOP
Boolean functions. Therefore, graph data structure as
the essential base of this algorithm was defined, and
two agreements were made which forked from the
difference between mathematical definition of simple
cycles and what we need for our object. Then, the
method of minimization was talked, which used the
concepts of Karnaugh map. Finally, the algorithm of
minimization presented.

Corresponding Author
Masoud Nosrati
Department of Computer Engineering
Islamic Azad University, Kermanshah Branch,
Young Researchers Club, Kermanshah, Iran.
E-mail: minibigs_m@yahoo.co.uk

References
1. T. Sasao. EXMIN2: A Simplication Algorithm

for Exclusive-OR-Sum-of -Products Expression
for Multiple-Valued-Input Two-Valued-Output
functions. IEEE Trans. on Computer Aided
Design 12 (1993) 621-632.

2. David Money Harris, Sarah L. Harris, Digital
Design and Computer Architecture, Morgan
Kaufmann, 2007, pp. 51-62.

3. M.A. Thornton, R. Drechsler, and D.M. Miller.
Spectral Techniques in VLSI CAD. Kluwer
Academic Publ., 2001.

4. Morris M. Mano, Digital Design, 4th ed,
Prentice Hall, 2006, pp. 36-110.

5. Aviad Mintz, Martin Charles Golumbic,
Factoring Boolean functions using graph
partitioning, Discrete Applied Mathematics 149
(2005) 131 – 153

6. Jan Hlaviča, Petr Fišer, A Heuristic Method of
Two-Level Logic Synthesis, Karlovo nám. 13,
121 35 Prague 2.

7. Elis Horowitz, Sartag Sahni, Dinish Mehta,
Fundamentals of Data Structures in C++, 2nd ed,
Silicon Press, 2006.

8. John Adrian Bondy, U. S. R. Murty, Graph
theory with applications, 9th ed, Elsevier Science
Ltd, 1976, pp. 1-24.

9. Seymour Lipschutz, Schaum's outline of theory
and problems of discrete mathematics, 3rd ed,
McGraw-Hill, 2009, pp. 154-200.

Journal of American Science, 2011;7(6) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 96

10. M.C. Golumbic, Algorithmic Graph Theory and
Perfect Graphs, Academic Press, New York,
1980. Annals of Discrete Mathematics, second
ed., vol. 57, Elsevier, Amsterdam, 2004.

11. Sedgewick, Robert, Algorithms, Consulting
Editor Harrison, Michael A., Addison-Wesley,
1984. pp. 373-455.

12. Seymour Lipschutz, Schaum's outline of theory
and problems of data structures, Mcgraw-Hill,
1986.

13. Ian Parberry, Lecture notes on algorithm analysis
and computational complexity (ebook),
Department of Computer Science, University of
North Texas. Pages 66 to 71.

14. Martin Charles Golumbic, Algorithm graph
theory and perfect graphs, second edition,
Elsevier, 2004, pp. 31-37.

15. Balch, Mark, Complete Digital Design,
McGraw-Hill, 2003. pp. 3-32.

16. Popel, Denvis V., Information theoretic approach
to logic function minimization (ebook),
Technical University of Szczecin, 2000.

17. Yuke Wang, Data structures, Minimization and
complexity of boolean functions (ebook), A
thesis of Ph.D degree, University of
Saskatchewan, Canada (1995). Pages 8 to 20.

18. Victor Peter Nelson, Digital logic circuit analysis
and design, 2nd sub ed, Prentice Hall, 1995, pp.
90-120.

19. R. M. Karp Reducibility Among Combinatorial
Problems. in R. E. Miller and J. W. Thatcher
(editors): Complexity of Computer
Computations. New York: Plenum Press (1972),
85103.

5/7/2011

